35 research outputs found

    Large deviations analysis for the M/H2/n+MM/H_2/n + M queue in the Halfin-Whitt regime

    Full text link
    We consider the FCFS M/H2/n+MM/H_2/n + M queue in the Halfin-Whitt heavy traffic regime. It is known that the normalized sequence of steady-state queue length distributions is tight and converges weakly to a limiting random variable W. However, those works only describe W implicitly as the invariant measure of a complicated diffusion. Although it was proven by Gamarnik and Stolyar that the tail of W is sub-Gaussian, the actual value of lim⁑xβ†’βˆžxβˆ’2log⁑(P(W>x))\lim_{x \rightarrow \infty}x^{-2}\log(P(W >x)) was left open. In subsequent work, Dai and He conjectured an explicit form for this exponent, which was insensitive to the higher moments of the service distribution. We explicitly compute the true large deviations exponent for W when the abandonment rate is less than the minimum service rate, the first such result for non-Markovian queues with abandonments. Interestingly, our results resolve the conjecture of Dai and He in the negative. Our main approach is to extend the stochastic comparison framework of Gamarnik and Goldberg to the setting of abandonments, requiring several novel and non-trivial contributions. Our approach sheds light on several novel ways to think about multi-server queues with abandonments in the Halfin-Whitt regime, which should hold in considerable generality and provide new tools for analyzing these systems

    Collaborating queues: large service network and a limit order book

    Get PDF
    E-thesis pagination differs from hardbound copy kept in the Manuscripts Department, Cambridge University Library.We analyse the steady-state behaviour of two different models with collaborating queues: that is, models in which "customers" can be served by many types of "servers", and "servers" can process many types of "customers". The first example is a large-scale service system, such as a call centre. Collaboration is the result of cross-trained staff attending to several different types of incoming calls. We first examine a load-balancing policy, which aims to keep servers in different pools equally busy. Although the policy behaves order-optimally over fixed time horizons, we show that the steady-state distribution may fail to be tight on the diffusion scale. That is, in a family of ever-larger networks whose arrival rates grow as O(r) (where r is a scaling parameter growing to infinity), the sequence of steady-state deviations from equilibrium scaled down by sqrt(r) is not tight. We then propose a different policy, for which we show that the sequence of invariant distributions is tight on the r^(1/2+epsilon) scale, for any epsilon > 0. For this policy we conjecture that tightness holds on the diffusion scale as well. The second example models a limit order book, a pricing mechanism for a single-commodity market in which buyers (respectively sellers) are prepared to wait for the price to drop (respectively rise). We analyse the behaviour of a simplified model, in which the arrival events are independent of each other and the state of the limit order book. The system can be represented by a queueing model, with "customers" and "servers" corresponding to bids and asks; the roles of customers and servers are symmetric. We show that, with probability 1, the price interval breaks up into three regions. At small (respectively large) prices, only finitely many bid (respectively ask) orders ever get fulfilled, while in the middle region all orders eventually clear. We derive equations which define the boundaries between these regions, and solve them explicitly in the case of iid uniform arrivals to obtain numeric values of the thresholds. We derive a heuristic for the distribution of the highest bid (respectively lowest ask), and present simulation data confirming it.This work was supported by the US National Science Foundation Graduate Research Fellowship

    Engineering Solution of a Basic Call-Center Model

    Full text link

    Performance analysis at the crossroad of queueing theory and road traffic

    Get PDF
    corecore