7,141 research outputs found

    Rare Probability Estimation under Regularly Varying Heavy Tails

    Get PDF
    This paper studies the problem of estimating the probability of symbols that have occurred very rarely, in samples drawn independently from an unknown, possibly infinite, discrete distribution. In particular, we study the multiplicative consistency of estimators, defined as the ratio of the estimate to the true quantity converging to one. We first show that the classical Good-Turing estimator is not universally consistent in this sense, despite enjoying favorable additive properties. We then use Karamata's theory of regular variation to prove that regularly varying heavy tails are sufficient for consistency. At the core of this result is a multiplicative concentration that we establish both by extending the McAllester-Ortiz additive concentration for the missing mass to all rare probabilities and by exploiting regular variation. We also derive a family of estimators which, in addition to being consistent, address some of the shortcomings of the Good-Turing estimator. For example, they perform smoothing implicitly and have the absolute discounting structure of many heuristic algorithms. This also establishes a discrete parallel to extreme value theory, and many of the techniques therein can be adapted to the framework that we set forth.National Science Foundation (U.S.) (Grant 6922470)United States. Office of Naval Research (Grant 6918937

    Efficient rare-event simulation for the maximum of heavy-tailed random walks

    Full text link
    Let (Xn:n0)(X_n:n\geq 0) be a sequence of i.i.d. r.v.'s with negative mean. Set S0=0S_0=0 and define Sn=X1+...+XnS_n=X_1+... +X_n. We propose an importance sampling algorithm to estimate the tail of M=max{Sn:n0}M=\max \{S_n:n\geq 0\} that is strongly efficient for both light and heavy-tailed increment distributions. Moreover, in the case of heavy-tailed increments and under additional technical assumptions, our estimator can be shown to have asymptotically vanishing relative variance in the sense that its coefficient of variation vanishes as the tail parameter increases. A key feature of our algorithm is that it is state-dependent. In the presence of light tails, our procedure leads to Siegmund's (1979) algorithm. The rigorous analysis of efficiency requires new Lyapunov-type inequalities that can be useful in the study of more general importance sampling algorithms.Comment: Published in at http://dx.doi.org/10.1214/07-AAP485 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Efficient Simulation and Conditional Functional Limit Theorems for Ruinous Heavy-tailed Random Walks

    Full text link
    The contribution of this paper is to introduce change of measure based techniques for the rare-event analysis of heavy-tailed stochastic processes. Our changes-of-measure are parameterized by a family of distributions admitting a mixture form. We exploit our methodology to achieve two types of results. First, we construct Monte Carlo estimators that are strongly efficient (i.e. have bounded relative mean squared error as the event of interest becomes rare). These estimators are used to estimate both rare-event probabilities of interest and associated conditional expectations. We emphasize that our techniques allow us to control the expected termination time of the Monte Carlo algorithm even if the conditional expected stopping time (under the original distribution) given the event of interest is infinity -- a situation that sometimes occurs in heavy-tailed settings. Second, the mixture family serves as a good approximation (in total variation) of the conditional distribution of the whole process given the rare event of interest. The convenient form of the mixture family allows us to obtain, as a corollary, functional conditional central limit theorems that extend classical results in the literature. We illustrate our methodology in the context of the ruin probability P(supnSn>b)P(\sup_n S_n >b), where SnS_n is a random walk with heavy-tailed increments that have negative drift. Our techniques are based on the use of Lyapunov inequalities for variance control and termination time. The conditional limit theorems combine the application of Lyapunov bounds with coupling arguments

    On the residual dependence index of elliptical distributions

    Full text link
    The residual dependence index of bivariate Gaussian distributions is determined by the correlation coefficient. This tail index is of certain statistical importance when extremes and related rare events of bivariate samples with asymptotic independent components are being modeled. In this paper we calculate the partial residual dependence indices of a multivariate elliptical random vector assuming that the associated random radius is in the Gumbel max-domain of attraction. Furthermore, we discuss the estimation of these indices when the associated random radius possesses a Weibull-tail distribution.Comment: 11 pages, case \theta=1 now include
    corecore