2,005 research outputs found

    LLM for Test Script Generation and Migration: Challenges, Capabilities, and Opportunities

    Full text link
    This paper investigates the application of large language models (LLM) in the domain of mobile application test script generation. Test script generation is a vital component of software testing, enabling efficient and reliable automation of repetitive test tasks. However, existing generation approaches often encounter limitations, such as difficulties in accurately capturing and reproducing test scripts across diverse devices, platforms, and applications. These challenges arise due to differences in screen sizes, input modalities, platform behaviors, API inconsistencies, and application architectures. Overcoming these limitations is crucial for achieving robust and comprehensive test automation. By leveraging the capabilities of LLMs, we aim to address these challenges and explore its potential as a versatile tool for test automation. We investigate how well LLMs can adapt to diverse devices and systems while accurately capturing and generating test scripts. Additionally, we evaluate its cross-platform generation capabilities by assessing its ability to handle operating system variations and platform-specific behaviors. Furthermore, we explore the application of LLMs in cross-app migration, where it generates test scripts across different applications and software environments based on existing scripts. Throughout the investigation, we analyze its adaptability to various user interfaces, app architectures, and interaction patterns, ensuring accurate script generation and compatibility. The findings of this research contribute to the understanding of LLMs' capabilities in test automation. Ultimately, this research aims to enhance software testing practices, empowering app developers to achieve higher levels of software quality and development efficiency.Comment: Accepted by the 23rd IEEE International Conference on Software Quality, Reliability, and Security (QRS 2023

    Wizundry: A Cooperative Wizard of Oz Platform for Simulating Future Speech-based Interfaces with Multiple Wizards

    Full text link
    Wizard of Oz (WoZ) as a prototyping method has been used to simulate intelligent user interfaces, particularly for speech-based systems. However, as our societies' expectations on artificial intelligence (AI) grows, the question remains whether a single Wizard is sufficient for it to simulate smarter systems and more complex interactions. Optimistic visions of 'what artificial intelligence (AI) can do' places demands on WoZ platforms to simulate smarter systems and more complex interactions. This raises the question of whether the typical approach of employing a single Wizard is sufficient. Moreover, while existing work has employed multiple Wizards in WoZ studies, a multi-Wizard approach has not been systematically studied in terms of feasibility, effectiveness, and challenges. We offer Wizundry, a real-time, web-based WoZ platform that allows multiple Wizards to collaboratively operate a speech-to-text based system remotely. We outline the design and technical specifications of our open-source platform, which we iterated over two design phases. We report on two studies in which participant-Wizards were tasked with negotiating how to cooperatively simulate an interface that can handle natural speech for dictation and text editing as well as other intelligent text processing tasks. We offer qualitative findings on the Multi-Wizard experience for Dyads and Triads of Wizards. Our findings reveal the promises and challenges of the multi-Wizard approach and open up new research questions.Comment: 34 page

    PodReels: Human-AI Co-Creation of Video Podcast Teasers

    Full text link
    Video podcast teasers are short videos that can be shared on social media platforms to capture interest in the full episodes of a video podcast. These teasers enable long-form podcasters to reach new audiences and gain new followers. However, creating a compelling teaser from an hour-long episode is challenging. Selecting interesting clips requires significant mental effort; editing the chosen clips into a cohesive, well-produced teaser is time-consuming. To support the creation of video podcast teasers, we first investigate what makes a good teaser. We combine insights from both audience comments and creator interviews to determine a set of essential ingredients. We also identify a common workflow shared by creators during the process. Based on these findings, we introduce a human-AI co-creative tool called PodReels to assist video podcasters in creating teasers. Our user study shows that PodReels significantly reduces creators' mental demand and improves their efficiency in producing video podcast teasers

    Adaptive model-driven user interface development systems

    Get PDF
    Adaptive user interfaces (UIs) were introduced to address some of the usability problems that plague many software applications. Model-driven engineering formed the basis for most of the systems targeting the development of such UIs. An overview of these systems is presented and a set of criteria is established to evaluate the strengths and shortcomings of the state-of-the-art, which is categorized under architectures, techniques, and tools. A summary of the evaluation is presented in tables that visually illustrate the fulfillment of each criterion by each system. The evaluation identified several gaps in the existing art and highlighted the areas of promising improvement

    A Human-Centered Approach for Designing Decision Support Systems

    Get PDF
    The choice to include the human in the decision process affects four key areas of system design: problem representation, system analysis and design, solution technique selection, and interface requirements specification. I introduce a design methodology that captures the necessary choices associated with each of these areas. In particular I show how this methodology is applied to the design of an actual decision Support system for satellite operations scheduling. Supporting the user\u27s ability to monitor the actions of the system and to guide the decision process of the system are two key considerations in the successful design of a decision support system. Both of these points rely on the correct specification of human-computer interaction points. Traditional, computer-centered system design approaches do not do this well, if at all, and are insufficient for the design of decision support systems. These approaches typically leave the definition of human-computer interaction points till after the component and system level designs are complete. This is too late however since the component and system level design decisions can impose inflexible constraints on the choice of the human-computer interaction points. This often leads to the design of human-computer interaction points that are only good enough. These approaches result in ill-conceived problem representations and poor user-system interaction points because the system lacks the underlying architecture to support these constructs efficiently. Decision support systems require a new, human-centered design approach rather than the traditional computer-centered approaches

    Domain Specialization as the Key to Make Large Language Models Disruptive: A Comprehensive Survey

    Full text link
    Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). Domain specification techniques are key to make large language models disruptive in many applications. Specifically, to solve these hurdles, there has been a notable increase in research and practices conducted in recent years on the domain specialization of LLMs. This emerging field of study, with its substantial potential for impact, necessitates a comprehensive and systematic review to better summarize and guide ongoing work in this area. In this article, we present a comprehensive survey on domain specification techniques for large language models, an emerging direction critical for large language model applications. First, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. Second, we present an extensive taxonomy of critical application domains that can benefit dramatically from specialized LLMs, discussing their practical significance and open challenges. Last, we offer our insights into the current research status and future trends in this area

    OpenCog Hyperon: A Framework for AGI at the Human Level and Beyond

    Full text link
    An introduction to the OpenCog Hyperon framework for Artificiai General Intelligence is presented. Hyperon is a new, mostly from-the-ground-up rewrite/redesign of the OpenCog AGI framework, based on similar conceptual and cognitive principles to the previous OpenCog version, but incorporating a variety of new ideas at the mathematical, software architecture and AI-algorithm level. This review lightly summarizes: 1) some of the history behind OpenCog and Hyperon, 2) the core structures and processes underlying Hyperon as a software system, 3) the integration of this software system with the SingularityNET ecosystem's decentralized infrastructure, 4) the cognitive model(s) being experimentally pursued within Hyperon on the hopeful path to advanced AGI, 5) the prospects seen for advanced aspects like reflective self-modification and self-improvement of the codebase, 6) the tentative development roadmap and various challenges expected to be faced, 7) the thinking of the Hyperon team regarding how to guide this sort of work in a beneficial direction ... and gives links and references for readers who wish to delve further into any of these aspects

    Decoupling User Interface Design Using Libraries of Reusable Components

    Get PDF
    The integration of electronic and mechanical hardware, software and interaction design presents a challenging design space for researchers developing physical user interfaces and interactive artifacts. Currently in the academic research community, physical user interfaces and interactive artifacts are predominantly designed and prototyped either as one-off instances from the ground up, or using functionally rich hardware toolkits and prototyping systems. During this prototyping phase, undertaking an integral design of the interface or interactive artifact’s electronic hardware is frequently constraining due to the tight couplings between the different design realms and the typical need for iterations as the design matures. Several current toolkit designs have consequently embraced component-sharing and component-swapping modular designs with a view to extending flexibility and improving researcher freedom by disentangling and softening the cause-effect couplings. Encouraged by early successes of these toolkits, this research work strives to further enhance these freedoms by pursuing an alternative style and dimension of hardware modularity. Another motivation is our goal to facilitate the design and development of certain classes of interfaces and interactive artifacts for which current electronic design approaches are argued to be restrictively constraining (e.g., relating to scale and complexity). Unfortunately, this goal of a new platform architecture is met with conceptual and technical challenges on the embedded system networking front. In response, this research investigates and extends a growing field of multi-module distributed embedded systems. We identify and characterize a sub-class of these systems, calling them embedded aggregates. We then outline and develop a framework for realizing the embedded aggregate class of systems. Toward this end, this thesis examines several architectures, topologies and communication protocols, making the case for and substantial steps toward the development of a suite of networking protocols and control algorithms to support embedded aggregates. We define a set of protocols, mechanisms and communication packets that collectively form the underlying framework for the aggregates. Following the aggregates design, we develop blades and tiles to support user interface researchers
    • …
    corecore