20,779 research outputs found

    ARMD Workshop on Materials and Methods for Rapid Manufacturing for Commercial and Urban Aviation

    Get PDF
    This report documents the goals, organization and outcomes of the NASA Aeronautics Research Mission Directorates (ARMD) Materials and Methods for Rapid Manufacturing for Commercial and Urban Aviation Workshop. The workshop began with a series of plenary presentations by leaders in the field of structures and materials, followed by concurrent symposia focused on forecasting the future of various technologies related to rapid manufacturing of metallic materials and polymeric matrix composites, referred to herein as composites. Shortly after the workshop, questionnaires were sent to key workshop participants from the aerospace industry with requests to rank the importance of a series of potential investment areas identified during the workshop. Outcomes from the workshop and subsequent questionnaires are being used as guidance for NASA investments in this important technology area

    Ancient and historical systems

    Get PDF

    Metal-Organic Frameworks in Germany: from Synthesis to Function

    Full text link
    Metal-organic frameworks (MOFs) are constructed from a combination of inorganic and organic units to produce materials which display high porosity, among other unique and exciting properties. MOFs have shown promise in many wide-ranging applications, such as catalysis and gas separations. In this review, we highlight MOF research conducted by Germany-based research groups. Specifically, we feature approaches for the synthesis of new MOFs, high-throughput MOF production, advanced characterization methods and examples of advanced functions and properties

    The 2019 materials by design roadmap

    Get PDF
    Advances in renewable and sustainable energy technologies critically depend on our ability to design and realize materials with optimal properties. Materials discovery and design efforts ideally involve close coupling between materials prediction, synthesis and characterization. The increased use of computational tools, the generation of materials databases, and advances in experimental methods have substantially accelerated these activities. It is therefore an opportune time to consider future prospects for materials by design approaches. The purpose of this Roadmap is to present an overview of the current state of computational materials prediction, synthesis and characterization approaches, materials design needs for various technologies, and future challenges and opportunities that must be addressed. The various perspectives cover topics on computational techniques, validation, materials databases, materials informatics, high-throughput combinatorial methods, advanced characterization approaches, and materials design issues in thermoelectrics, photovoltaics, solid state lighting, catalysts, batteries, metal alloys, complex oxides and transparent conducting materials. It is our hope that this Roadmap will guide researchers and funding agencies in identifying new prospects for materials design

    Space Transportation Materials and Structures Technology Workshop

    Get PDF
    The Space Transportation Materials and Structures Technology Workshop was held on September 23-26, 1991, in Newport News, Virginia. The workshop, sponsored by the NASA Office of Space Flight and the NASA Office of Aeronautics and Space Technology, was held to provide a forum for communication within the space materials and structures technology developer and user communities. Workshop participants were organized into a Vehicle Technology Requirements session and three working panels: Materials and Structures Technologies for Vehicle Systems, Propulsion Systems, and Entry Systems

    Breakdown of the static picture of defect energetics in halide perovskites: the case of the Br vacancy in CsPbBr3

    Full text link
    We consider the Br vacancy in CsPbBr3 as a prototype for the impact of structural dynamics on defect energetics in halide perovskites (HaPs). Using first-principles molecular dynamics based on density functional theory, we find that the static picture of defect energetics breaks down; the energy of the Br vacancy level is found to be intrinsically dynamic, oscillating by as much as 1 eV on the ps time scale at room temperature. These significant energy fluctuations are correlated with the distance between the neighboring Pb atoms across the vacancy and with the electrostatic potential at these Pb atomic sites. We expect this unusually strong coupling of structural dynamics and defect energetics to bear important implications for both experimental and theoretical analysis of defect characteristics in HaPs. It may also hold significant ramifications for carrier transport and defect tolerance in this class of photovoltaic materials.Comment: 5 figures, 1 tabl

    MCV/Q, Medical College of Virginia Quarterly, Vol. 13 No. 4

    Get PDF
    • …
    corecore