17,118 research outputs found

    Adaptive development and maintenance of user-centric software systems

    Get PDF
    A software system cannot be developed without considering the various facets of its environment. Stakeholders – including the users that play a central role – have their needs, expectations, and perceptions of a system. Organisational and technical aspects of the environment are constantly changing. The ability to adapt a software system and its requirements to its environment throughout its full lifecycle is of paramount importance in a constantly changing environment. The continuous involvement of users is as important as the constant evaluation of the system and the observation of evolving environments. We present a methodology for adaptive software systems development and maintenance. We draw upon a diverse range of accepted methods including participatory design, software architecture, and evolutionary design. Our focus is on user-centred software systems

    Virtual Prototyping for Dynamically Reconfigurable Architectures using Dynamic Generic Mapping

    Get PDF
    This paper presents a virtual prototyping methodology for Dynamically Reconfigurable (DR) FPGAs. The methodology is based around a library of VHDL image processing components and allows the rapid prototyping and algorithmic development of low-level image processing systems. For the effective modelling of dynamically reconfigurable designs a new technique named, Dynamic Generic Mapping is introduced. This method allows efficient representation of dynamic reconfiguration without needing any additional components to model the reconfiguration process. This gives the designer more flexibility in modelling dynamic configurations than other methodologies. Models created using this technique can then be simulated and targeted to a specific technology using the same code. This technique is demonstrated through the realisation of modules for a motion tracking system targeted to a DR environment, RIFLE-62

    Lessons Learned from a Decade of Providing Interactive, On-Demand High Performance Computing to Scientists and Engineers

    Full text link
    For decades, the use of HPC systems was limited to those in the physical sciences who had mastered their domain in conjunction with a deep understanding of HPC architectures and algorithms. During these same decades, consumer computing device advances produced tablets and smartphones that allow millions of children to interactively develop and share code projects across the globe. As the HPC community faces the challenges associated with guiding researchers from disciplines using high productivity interactive tools to effective use of HPC systems, it seems appropriate to revisit the assumptions surrounding the necessary skills required for access to large computational systems. For over a decade, MIT Lincoln Laboratory has been supporting interactive, on-demand high performance computing by seamlessly integrating familiar high productivity tools to provide users with an increased number of design turns, rapid prototyping capability, and faster time to insight. In this paper, we discuss the lessons learned while supporting interactive, on-demand high performance computing from the perspectives of the users and the team supporting the users and the system. Building on these lessons, we present an overview of current needs and the technical solutions we are building to lower the barrier to entry for new users from the humanities, social, and biological sciences.Comment: 15 pages, 3 figures, First Workshop on Interactive High Performance Computing (WIHPC) 2018 held in conjunction with ISC High Performance 2018 in Frankfurt, German

    The Front end of Software-Defined Radio: Possibilities and Challenges

    Get PDF
    The use of mobile telephony has shown a spectacular\ud growth in the last 10 years. A side effect of this rapid\ud growth is an excess of mobile system standards. Therefore,\ud the Software-Defined-Radio (SDR) concept is emerging as\ud a potential pragmatic solution: it aims to build flexible radio\ud systems, which are multi-service, multi-standard, multiband,\ud re-configurable and re-programmable, by software.\ud First, this paper presents a global overview of SDR.\ud Furthermore, it discusses several front-end architectures of\ud SDR. The goal of this project is to generate knowledge about\ud designing part of the functionality of SDR, implemented by\ud rapid prototyping strategies. The focus is on the front end\ud of SDR. The technological roadmap is taken into account to\ud evaluate several architectures

    WESTT (Workload, Error, Situational Awareness, Time and Teamwork): An analytical prototyping system for command and control

    Get PDF
    Modern developments in the use of information technology within command and control allow unprecedented scope for flexibility in the way teams deal with tasks. These developments, together with the increased recognition of the importance of knowledge management within teams present difficulties for the analyst in terms of evaluating the impacts of changes to task composition or team membership. In this paper an approach to this problem is presented that represents team behaviour in terms of three linked networks (representing task, social network structure and knowledge) within the integrative WESTT software tool. In addition, by automating analyses of workload and error based on the same data that generate the networks, WESTT allows the user to engage in the process of rapid and iterative “analytical prototyping”. For purposes of illustration an example of the use of this technique with regard to a simple tactical vignette is presented

    Deep Space Network information system architecture study

    Get PDF
    The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    Towards homeostatic architecture: simulation of the generative process of a termite mound construction

    Get PDF
    This report sets out to the theme of the generation of a ‘living’, homeostatic and self-organizing architectural structure. The main research question this project addresses is what innovative techniques of design, construction and materials could prospectively be developed and eventually applied to create and sustain human-made buildings which are mostly adaptive, self-controlled and self-functioning, without option to a vast supply of materials and peripheral services. The hypothesis is that through the implementation of the biological building behaviour of termites, in terms of collective construction mechanisms that are based on environmental stimuli, we could achieve a simulation of the generative process of their adaptive structures, capable to inform in many ways human construction. The essay explicates the development of the 3-dimensional, agent-based simulation of the termite collective construction and analyzes the results, which involve besides physical modelling of the evolved structures. It finally elucidates the potential of this emerging and adaptive architectural performance to be translated to human practice and thus enlighten new ecological engineering and design methodologies
    corecore