329 research outputs found

    A Computational Study of the Kinematics of Femoroacetabular Morphology During A Sit-to-Stand Transfer

    Get PDF
    Computational modeling in the field of biomechanics is becoming increasingly popular and successful in practice for its ability to predict function and provide information that would otherwise be unobtainable. Through the application of these new and constantly improving methods, kinematics and joint contact characteristics in pathological conditions of femoroacetabular impingement (FAI) and total hip arthroplasty (THA) were studied using a lower extremity computational model. Patients presenting with FAI exhibit abnormal contact between the femoral neck and acetabular rim leading to surrounding tissue damage in daily use. THA is the replacement of both the proximal femur and acetabular region of the pelvis and is the most common surgical intervention for degenerative hip disorders. A combination of rigid osteoarticular anatomy and force vectors representing soft tissue structures were used in developing this model. Kinematics produced by healthy models were formally validated with experimental data from Burnfield et al. This healthy model was then modified to emulate the desired morphology of FAI and a THA procedure with a range of combined version (CV) angles. All soft tissue structures were maintained constant for each subsequent model. Data gathered from these models did not provide any significant differences between the kinematics of healthy and FAI but did show a large amount of variation in all THA kinematics including incidents of dislocation with cases of lower CV angles. With the results of these computational studies performed with this model, an increased understanding of hip morphology with regards to STS has been achieved

    On the biomechanics of ligaments and muscles throughout the range of hip motion

    Get PDF
    At the limits of the range of hip motion, impingement, subluxation and edge loading can cause osteoarthritis in natural hips or early failure hip replacements. The aim of this PhD was to investigate the role of hip joint soft tissues throughout the range of hip motion to better understand their role in preventing (or perhaps even causing) these problematic load cases. A musculoskeletal model was used to investigate the muscular contribution to edge loading and found that in the mid-range of hip motion, the lines of action of hip muscles pointed inward from the acetabular rim and thus would stabilise the hip. However, in deep hip flexion with adduction, nearly half the muscles had unfavourable lines of action which could encourage edge loading. Conversely, in-vitro tests on nine cadaveric hips found that the hip capsular ligaments were slack in the mid-range of hip motion but tightened to restrain excessive hip rotation in positions close to the limits of hip motion. This passive restraint prevented the hip from moving into positions where the muscle lines of action were found to be unfavourable and thus could help protect the hip from edge loading. The ligaments were also found to protect the hip against impingement and dislocation. Out of the labrum, the ligamentum teres and the three capsular ligaments, it was found that the iliofemoral and ischiofemoral ligaments were primary restraints to hip rotation. These two capsular ligaments should be prioritised for protection/repair during hip surgery to maintain normal hip passive restraint. Whilst this can be technically demanding, failing to preserve/restore their function may increase the risk of osteoarthritic degeneration or hip replacement failure.Open Acces

    Motion study of the hip joint in extreme postures

    Get PDF
    Many causes can be at the origin of hip osteoarthritis (e.g., cam/pincer impingements), but the exact pathogenesis for idiopathic osteoarthritis has not yet been clearly delineated. The aim of the present work is to analyze the consequences of repetitive extreme hip motion on the labrum cartilage. Our hypothesis is that extreme movements can induce excessive labral deformations and lead to early arthritis. To verify this hypothesis, an optical motion capture system is used to estimate the kinematics of patient-specific hip joint, while soft tissue artifacts are reduced with an effective correction method. Subsequently, a physical simulation system is used during motion to compute accurate labral deformations and to assess the global pressure of the labrum, as well as any local pressure excess that may be physiologically damageable. Results show that peak contact pressures occur at extreme hip flexion/abduction and that the pressure distribution corresponds with radiologically observed damage zones in the labru

    Accelerated wear testing methodologies for total hip replacements.

    Get PDF
    PhDOver the last three decades tribological studies of polyethylene total hip replacements have been undertaken using a simplified model of normal walking. As hip prostheses are being implanted in younger and more active patients, coupled with the increased wear resistance of crosslinked polyethylene, such in vitro approximations in patient activity are limiting. Therefore an alternative wear testing methodology for total hip replacements has been proposed, measuring the influences of fast walking, stumbling and simulated jogging sequences, all at varying cycle speeds with both smooth and roughened femoral components. This hip simulator study has shown that the influence of femoral roughness on the wear of crosslinked polyethylene becomes significantly greater under increased patient activity, demonstrating that roughness may be a more influential factor than previously ascribed. The combined effects of high roughness (Re of 0.38 μm), high joint forces (4.5 kN max) and high sliding speed (1.75 Hz) generated excessive crosslinked polyethylene wear and high joint torque, with wear rates exceeding 3000 mm3/106 cycles (k = 50 x10-6 mm3/N m). Thus for more active patients, implant survival can be greatly increased by using harder and more damage resistant femoral heads compared to CoCrMo. Under smooth conditions however, the overall influence of a significant increase in patient activity showed a much weaker effect. It was found that with smooth heads and non-constraining socket fixtures, the occurrence of excessive stumbling at 1 Hz (5 kN max) had a negligible effect on the wear of crosslinked polyethylene, whilst simulated jogging at 1.75 Hz (4.5 kN max) only showed a median increase in wear volume of 40 % compared to normal walking. Fast walking produced the largest wear rate (53 mm3/106 cycles), and was consistently greater than for simulated jogging. Ignoring fixation and other factors, these results suggest that whilst preserving polished surfaces, short periods of increased patient activity, for example, aerobics, tennis etc, will not greatly reduce the survival of crosslinked polyethylene/metal implants. Sliding speed and the degree of socket clamping were shown to be the most influential factors under smooth conditions, with the results showing no significant differences in wear rate when testing in varying quantities of bovine serum, or using an inverted or physiological specimen orientation.Engineering and Physical Science Research Council (EPSRC) for grant fundin

    Index to NASA Tech Briefs, 1972

    Get PDF
    Abstracts of 1972 NASA Tech Briefs are presented. Four indexes are included: subject, personal author, originating center, and Tech Brief number

    Contact modeling and collision detection in human joints

    Get PDF
    Collision detection among virtual objects is one of the main concerns in virtual reality and computer graphics. Usually the methods developed for collision detection are for either very general cases or very specific applications. The first main goal of this thesis is to propose accurate methods for collision detection in computer graphics for rotating or sliding objects. The methods take advantage of the limitation imposed on the rotating/sliding objects in order to ignore unnecessary calculations of the general methods and speed up the processing. In addition to finding the collision, the methods can also return penetration depths in either radial or cylindrical direction, which can be useful for further applications. The second main goal is to apply the proposed collision detection methods in biomedical research related to human hip joints. In fact, during the past few years, femoroacetabular impingement (FAI) was recognized as the leading pathomechanism contributing to a significant number of so-called "primary" hip osteoarthritis. Thus, having medical simulation of hip joint can help both physicians and surgeons for better diagnosis and surgical planning. For diagnosing some of the human joint diseases, it is important to obtain the joint's range of motion. By modifying the pre-processing stage of one of the collision detection methods, a new fast method for finding maximum range of motion in human joint was proposed and tested. The method is working without doing any collision detection tests and its accuracy does not depend on the rotational steps. We also suggested a novel fast strategy for diagnosing hip diseases based on hip contact penetration depths. In this strategy, the contact penetration depths during hip movement are calculated for diagnosing hip impingements, by using the proposed collision detection methods. The strategy has been tested on pathological hip models during a daily activity. The results were found correlated with the contact stresses estimated by finite element method (FEM). By evaluating the results, the strategy proved to be capable for distinguishing among different hip pathologies (e.g. cam and pincer impingements). In orthopedic simulations, the behavior of the bones and the related tissues are usually investigated during their movements about an estimated center of rotation. We also evaluated the importance of the hip joint center of rotation in medical simulations. For this reason, different centers of rotation calculated by five different methods were applied for hip movements about different medical axes of rotation. By calculating the hip contact penetration depths of ten patients during hip movements (using the proposed collision detection methods), the sensitivity of hip simulations to hip center of rotation has been evaluated. Hip contact pressure has been a notable parameter to evaluate the physical conditions inside the hip joint. Many computational approaches estimate the pressure and contact pressures via finite element methods (FEM) by using 3D meshes of the tissues. Although this type of simulation can provide a good evaluation of hip problems, the process may be very time consuming. Also, these mechanical methods strongly depend on the movement details. We proposed and tested a fast statistical model for estimating hip contact pressures during its movement, without performing mechanical simulations and without any need for movement details. The estimation is done by evaluating geometric features extracted from 3D meshes of hip tissues, in order to link an unknown target hip model to some already mechanically evaluated training hip models

    Visualisation of articular motion in orthopaedics

    Get PDF
    Shouder replacement surgery is difficult surgery, with a relatively large risk on limited post-operative range of motion for patients. Adaptations to the anatomy of joints by placing a prosthesis affects the articulation of the joint. In this thesis we present a software system that simulates and visualises these effects. By loading a CT-scan of the shoulder of a patient we can simulate the range of motion of the joint and visualize limitations as a result of rigid structures of the joint. Surgeons may set up an operation plan and see what the consequences of the operation will be for the range of motion of the patient. The thesis investigates aspects that are relevant for the system. We describe an algorithm to convert the scan data to bone models. In addition, a validation experiment is presented. A method for motion registration and visualisation of recorded kinematic data is presented. Finally, this thesis concerns the application of the system to different surgical problems, such as hip arthroplasty and shoulder fractures.Annafonds Biomet Nederland Clinical Graphics DePuy JTE Johnson & Johnson Dutch Arthritis Association Litos/ Motek Medical TornierUBL - phd migration 201

    Mechanical characterisation of acetabular soft tissues: experimental and computational study

    Get PDF
    Abnormal hip contact mechanisms can be associated with acetabular soft tissue damage and the progression of osteoarthritis. One morphological cause of this abnormal mechanical environment is a cam-shaped femoral head that results in impingement with the acetabular rim and labrum during hip motions. In this thesis, cam-type femoroacetabular impingement (FAI) related loading was mimicked on the acetabular cartilage-labral junction in vitro and in silico. During loading, computed tomography scans were obtained whereby radiopaque solution was used in order to separate acetabular soft tissues in the hip during contact. Measurements of overall cartilage strain were taken at the centre of the contact region and the labral apex displacement was established in three-dimensional space. The circumferential properties of the labrum were also assessed by re-loading the tissue sample following introducing a cut to the labrum. Two-dimensional finite element models of the femoral head and acetabulum were developed based on an image slice through the centre of the contact region. Geometrical features of the acetabulum and femur at the contact site were captured in the models. Computational results were compared with experimental results. A parametric study was conducted on the models for verification and for investigation of hip parameters regarding the soft tissue behaviour under load. Contact occurred at the anterior-superior region of the acetabulum in all samples, as would be expected if the conditions of cam-type FAI were replicated. The cartilage strain ranged from 20% to 60% and the labrum maximum displacement ranged from 1.5 to 5.0 mm, measured from CT scans in all samples. The circumferential effect in the labrum was demonstrated with an averaged factor of 1.4 of increase in the labrum apex displacement per applied force in labrum-cut cases. The cartilage strain and load distribution in soft tissues were found to be sensitive to the femoral head position in the computational models, with strain differences up to 41% and cartilage contact force differences up to 237%. The ratio between the cartilage and labrum Young’s modulus affected the tensile strain at the cartilage-labral junction by up to 14%. The position of cartilage-labral junction affected the total contact force on the soft tissue by up to 49%. This work measured the soft tissue behaviour under cam-type FAI loading via an experimental approach and characterised the soft tissue behaviour under various set-ups via computational approach. The importance of adapting reliable tissue alignment and three-dimensional modelling were highlighted. It can be concluded that, stiffer labrum compared to the cartilage, along with focused loading at the cartilage-labral junction, would cause high strain in the cartilage and concentrated tensile strain at the junction, suggesting the damage mechanism in hips with FAI
    corecore