393 research outputs found

    Earthquake Arrival Association with Backprojection and Graph Theory

    Full text link
    The association of seismic wave arrivals with causative earthquakes becomes progressively more challenging as arrival detection methods become more sensitive, and particularly when earthquake rates are high. For instance, seismic waves arriving across a monitoring network from several sources may overlap in time, false arrivals may be detected, and some arrivals may be of unknown phase (e.g., P- or S-waves). We propose an automated method to associate arrivals with earthquake sources and obtain source locations applicable to such situations. To do so we use a pattern detection metric based on the principle of backprojection to reveal candidate sources, followed by graph-theory-based clustering and an integer linear optimization routine to associate arrivals with the minimum number of sources necessary to explain the data. This method solves for all sources and phase assignments simultaneously, rather than in a sequential greedy procedure as is common in other association routines. We demonstrate our method on both synthetic and real data from the Integrated Plate Boundary Observatory Chile (IPOC) seismic network of northern Chile. For the synthetic tests we report results for cases with varying complexity, including rates of 500 earthquakes/day and 500 false arrivals/station/day, for which we measure true positive detection accuracy of > 95%. For the real data we develop a new catalog between January 1, 2010 - December 31, 2017 containing 817,548 earthquakes, with detection rates on average 279 earthquakes/day, and a magnitude-of-completion of ~M1.8. A subset of detections are identified as sources related to quarry and industrial site activity, and we also detect thousands of foreshocks and aftershocks of the April 1, 2014 Mw 8.2 Iquique earthquake. During the highest rates of aftershock activity, > 600 earthquakes/day are detected in the vicinity of the Iquique earthquake rupture zone

    Geo-correction of high-resolution imagery using fast template matching on a GPU in emergency mapping contexts

    Get PDF
    The increasing availability of satellite imagery acquired from existing and new sensors allow a wide variety of new applications that depend on the use of diverse spectral and spatial resolution data sets. One of the pre-conditions for the use of hybrid image data sets is a consistent geo-correction capacity. We demonstrate how a novel fast template matching approach implemented on a Graphics Processing Unit (GPU) allows us to accurately and rapidly geo-correct imagery in an automated way. The key difference with existing geo-correction approaches, which do not use a GPU, is the possibility to match large source image segments (8192 by 8192 pixels) with relatively large templates (512 by 512 pixels). Our approach is sufficiently robust to allow for the use of various reference data sources. The need for accelerated processing is relevant in our application context, which relates to mapping activities in the European Copernicus emergency management service. Our new method is demonstrated over an area North-West of Valencia (Spain) for a large forest fire event in July 2012. We use DEIMOS-1 and RapidEye imagery for the delineation of burnt fire scar extent. Automated geo-correction of each full resolution image sets takes approximately 1 minute. The reference templates are taken from the TerraColor data set and the Spanish national ortho-imagery data base, through the use of dedicate web map services (WMS). Geo-correction results are compared to the vector sets derived in the related Copernicus emergency service activation request.JRC.G.2-Global security and crisis managemen

    Earthquake Nucleation Processes Across Different Scales and Settings

    Get PDF
    Extended nucleation phases of earthquakes have been regularly observed, yet the underlying mechanisms governing the initiation phase of rupture are yet to be understood in detail. Currently two end member models exist to explain earthquake nucleation: one model claiming that the nucleation phase of a small earthquake is indistinguishable from that of a large one, while the other proposes fundamental differences in the underlying process. Previous studies have been using the same seismological observations to argue for either model, leaving the need of further investigations into the nucleation behavior of earthquakes across scales and different settings. The thesis at hand contributes to the current discussion on earthquake nucleation by providing additional observational evidence for extended nucleation phases, complex rupture interaction and growth across a number of different scales and settings. Here, earthquake nucleation is investigated for three different scenarios, each with varying degrees of complexity: 1) the controlled case of induced seismicity in hydraulic stimulations of geothermal reservoirs, where rupture growth is assumed to be primarily governed by anthropogenic activity, 2) the partly-controlled setting of a geothermal field with a long history of fluid injection and production, and 3) the uncontrolled case of natural seismicity in the central Sea of Marmara, where earthquake nucleation is purely governed by the regional tectonics. First, the temporal evolution of seismicity and the growth of observed moment magnitudes for a range of past and present hydraulic stimulation projects associated with the creation of enhanced geothermal systems are analyzed. They reveal a clear linear relation between injected fluid volume/hydraulic energy and cumulative seismic moments. For most projects studied, the observations are in good agreement with existing physical models that predict a relation between injected fluid volume and maximum seismic moment of induced events. This suggests that seismicity results from a stable, pressure controlled rupture process at least for an extended injection period. Overall evolution of seismicity is independent of tectonic stress regime and is most likely governed by reservoir specific parameters, such as the preexisting structural inventory. In contrast, a few stimulations reveal unbound increase in seismic moment suggesting that for these cases evolution of seismicity is mainly controlled by stress field, the size of tectonic faults and fault connectivity. The uncertainty over whether or not a transition between behavior is likely to occur at any point during the injection is what motivates the need for a next generation monitoring and traffic-light system accounting for the possibility of unstable rupture propagation from the very beginning of injection by observing the entire seismicity evolution at high resolution for an immediate reaction in injection strategy. Furthermore, the majority of pressure-controlled stimulations shows the potential of actively controlling the size of induced earthquakes, if an injection protocol is chosen based on continuous feedback from a near-real-time seismic monitoring system. Second, moderate sized earthquakes at The Geysers geothermal field (California), where years of injection and production across hundreds of wells have led to a unique physical environment, are studied. While overall seismicity at The Geysers is generally governed by anthropogenic activities, contributions of individual wells or injection activities are hard to distinguish, thus making detailed managing of occurring magnitudes challenging. New high-resolution seismicity catalogs framing the occurrence of 20 ML > 2.5 earthquakes were created. The seismicity catalogs were developed using a matched filter algorithm, including automatic determination of P and S phase onsets and their inversion for absolute hypocenter locations with corresponding uncertainties. The selected 20 sequences sample different hypocentral depths and hydraulic conditions within the field. Seismic activity and magnitude frequency distributions displayed by the different earthquake sequences are correlated with their location within the reservoir. Sequences located in the northwestern part of the reservoir show overall increased seismic activity and low b values, while the southeastern part is dominated by decreased seismic activity and higher b values. Periods of high injection coincide with high b values and vice versa. These observations potentially reflect varying differential and mean stresses and damage of the reservoir rocks across the field. Additionally, a systematic search for seismicity localization using a multi-step cross-correlation analysis was performed. No evidence for increased correlation between the occurring seismicity and the mainshock for any of the 20 sequences could be seen, indicating that each main nucleation spot was seismically silent prior to the main rupture. However, a number of highly inter-correlated earthquakes for sequences below the reservoir and during high injection activity is observed. Under these conditions, the seismicity surrounding the future mainshock source region is more concentrated and might be evidence for a cascading nucleation process. About 50% of analyzed sequences exhibit no change in seismicity rate in response to the large main event. However, we find complex waveforms at the onset of the main earthquake, suggesting that small ruptures spontaneously grow into or trigger larger events, consistent with a cascading type nucleation. Third, the spatiotemporal evolution of seismicity during a sequence of moderate (MW4.7 and MW5.8) earthquakes occurring in September 2019 at the transition between a creeping and a locked segment of the North Anatolian Fault in the central Sea of Marmara (Turkey) was analyzed. A matched filter technique was applied to continuous waveforms from the regional network, substantially reducing the magnitude threshold for detection. Sequences of foreshocks preceding the two mainshocks are clearly seen, exhibiting different behaviors: a migration of the seismicity along the entire fault segment on the long-term and a concentration around the epicenters of the large events on the short-term. Suggesting that both seismic and aseismic slip during the foreshock sequences change the stress state on the fault, bringing it closer to failure. Furthermore, the observations also suggest that the MW4.7 event contributed to weaken the fault as part of the preparation process of the MW5.8 earthquake. Combining the results obtained from different settings, it becomes apparent that, regardless of the tectonic setting and degree of anthropogenic control over the seismicity, there is a wide range of complex nucleation behaviours not yet explained by any of the current models of earthquake nucleation. A simplistic view of earthquake nucleation as either a deterministic or a stochastic process seems inconsistent with the obtained results and fails to account for a more complex nucleation behaviour. Observations from The Geysers and the western Sea of Marmara earthquake sequence, suggest that both cascade triggering and aseismic slip can play major roles in the nucleation of moderate sized earthquakes. Both mechanisms seem to jointly contribute to fault initiation, even within the same rock volume. A separation of the two mechanisms can potentially be thought of at The Geysers, where cascade triggering seems to dominate in highly damaged parts of the reservoir, suggesting that the anthropogenic activity can at least partially influence the nucleation behavior of the occurring seismicity. This would be in agreement with the results obtained from analysis of hydraulic stimulations, where during the pressure-controlled phase of injection rupture growth is controlled by the injected fluid

    A study of smart device-based mobile imaging and implementation for engineering applications

    Get PDF
    Title from PDF of title page, viewed on June 12, 2013Thesis advisor: ZhiQiang ChenVitaIncludes bibliographic references (pages 76-82)Thesis (M.S.)--School of Computing and Engineering. University of Missouri--Kansas City, 2013Mobile imaging has become a very active research topic in recent years thanks to the rapid development of computing and sensing capabilities of mobile devices. This area features multi-disciplinary studies of mobile hardware, imaging sensors, imaging and vision algorithms, wireless network and human-machine interface problems. Due to the limitation of computing capacity that early mobile devices have, researchers proposed client-server module, which push the data to more powerful computing platforms through wireless network, and let the cloud or standalone servers carry out all the computing and processing work. This thesis reviewed the development of mobile hardware and software platform, and the related research done on mobile imaging for the past 20 years. There are several researches on mobile imaging, but few people aim at building a framework which helps engineers solving problems by using mobile imaging. With higher-resolution imaging and high-performance computing power built into smart mobile devices, more and more imaging processing tasks can be achieved on the device rather than the client-server module. Based on this fact, a framework of collaborative mobile imaging is introduced for civil infrastructure condition assessment to help engineers solving technical challenges. Another contribution in this thesis is applying mobile imaging application into home automation. E-SAVE is a research project focusing on extensive use of automation in conserving and using energy wisely in home automation. Mobile users can view critical information such as energy data of the appliances with the help of mobile imaging. OpenCV is an image processing and computer vision library. The applications in this thesis use functions in OpenCV including camera calibration, template matching, image stitching and Canny edge detection. The application aims to help field engineers is interactive crack detection. The other one uses template matching to recognize appliances in the home automation system.Introduction -- Background and related work -- Basic imaging processing methods for mobile applications -- Collaborative and interactive mobile imaging -- Mobile imaging for smart energy -- Conclusion and recommendation

    Computer vision-based structural assessment exploiting large volumes of images

    Get PDF
    Visual assessment is a process to understand the state of a structure based on evaluations originating from visual information. Recent advances in computer vision to explore new sensors, sensing platforms and high-performance computing have shed light on the potential for vision-based visual assessment in civil engineering structures. The use of low-cost, high-resolution visual sensors in conjunction with mobile and aerial platforms can overcome spatial and temporal limitations typically associated with other forms of sensing in civil structures. Also, GPU-accelerated and parallel computing offer unprecedented speed and performance, accelerating processing the collected visual data. However, despite the enormous endeavor in past research to implement such technologies, there are still many practical challenges to overcome to successfully apply these techniques in real world situations. A major challenge lies in dealing with a large volume of unordered and complex visual data, collected under uncontrolled circumstance (e.g. lighting, cluttered region, and variations in environmental conditions), while just a tiny fraction of them are useful for conducting actual assessment. Such difficulty induces an undesirable high rate of false-positive and false-negative errors, reducing the trustworthiness and efficiency of their implementation. To overcome the inherent challenges in using such images for visual assessment, high-level computer vision algorithms must be integrated with relevant prior knowledge and guidance, thus aiming to have similar performance with those of humans conducting visual assessment. Moreover, the techniques must be developed and validated in the realistic context of a large volume of real-world images, which is likely contain numerous practical challenges. In this dissertation, the novel use of computer vision algorithms is explored to address two promising applications of vision-based visual assessment in civil engineering: visual inspection, and visual data analysis for post-disaster evaluation. For both applications, powerful techniques are developed here to enable reliable and efficient visual assessment for civil structures and demonstrate them using a large volume of real-world images collected from actual structures. State-of-art computer vision techniques, such as structure-from-motion and convolutional neural network techniques, facilitate these tasks. The core techniques derived from this study are scalable and expandable to many other applications in vision-based visual assessment, and will serve to close the existing gaps between past research efforts and real-world implementations

    Short-term interaction between silent and devastating earthquakes in Mexico

    Get PDF
    大地震とスロースリップの相互作用を解明 --メキシコにおける3つの大地震の連鎖的発生のメカニズム--. 京都大学プレスリリース. 2021-04-12.Either the triggering of large earthquakes on a fault hosting aseismic slip or the triggering of slow slip events (SSE) by passing seismic waves involve seismological questions with important hazard implications. Just a few observations plausibly suggest that such interactions actually happen in nature. In this study we show that three recent devastating earthquakes in Mexico are likely related to SSEs, describing a cascade of events interacting with each other on a regional scale via quasi-static and/or dynamic perturbations across the states of Guerrero and Oaxaca. Such interaction seems to be conditioned by the transient memory of Earth materials subject to the “traumatic” stress produced by seismic waves of the great 2017 (Mw8.2) Tehuantepec earthquake, which strongly disturbed the SSE cycles over a 650 km long segment of the subduction plate interface. Our results imply that seismic hazard in large populated areas is a short-term evolving function of seismotectonic processes that are often observable
    corecore