601 research outputs found

    Target Identification Strategies for MMV Malaria Box Inhibitors of Toxoplasma gondii Growth

    Get PDF
    Small molecule screening is commonly used to discover lead compounds for drug development, but it can also be a powerful way to identify chemical probes for studying biological mechanisms. Our lab uses small molecules to study the mechanisms by which the protozoan parasite Toxoplasma gondii infects and replicates within its hosts. In this work, we employed a fluorescence-based assay to screen the Medicines for Malaria Venture (MMV) Open Access Malaria box for compounds that affect T. gondii growth. The box contains 400 previously identified small-molecule inhibitors of the related parasite, Plasmodium falciparum. We identified 79 hits, including a 2,4-diaminoquinazoline (MMV006169; IC50=1.15µM) that strongly inhibits T. gondii intracellular replication and invasion with no evidence of toxicity to mammalian cells. Extensive structure-activity relationship analyses with T. gondii identified a number of analogs with changed potency and altered effects on replication and invasion. These structure-activity analyses provided the information necessary to synthesize a bivalent chemical inducer of dimerization (CID) containing MMV006169 for use in yeast three-hybrid experiments. Yeast growth competition assays showed that this CID is capable of entering the yeast nucleus, as required for yeast three-hybrid screening. Yeast three-hybrid was used in a targeted format to test the hypothesis that MMV006169 works by inhibiting parasite CDC48, an ATPase involved in trafficking and the degradation of misfolded proteins. Large-scale cDNA library screening by yeast three-hybrid suggests that the compound may instead be working through inhibition of a host cell target. This work has provided insight into how MMV006169 affects the parasite\u27s lytic cycle and generated a testable hypothesis for the biologically relevant target of the compound

    Identification of T. gondii myosin light chain-1 as a direct target of TachypleginA-2, a small-molecule inhibitor of parasite motility and invasion

    Get PDF
    This work was supported by US Public Health Service grant AI054961 (GEW/NJW), a University Research Fellowship from the Royal Society (NJW) and funding for the mass spectrometry analysis was provided by the Vermont Genetics Network/NIH Grant 8P20GM103449 from the INBRE program of the NIGMS.Motility of the protozoan parasite Toxoplasma gondii plays an important role in the parasite's life cycle and virulence within animal and human hosts. Motility is driven by a myosin motor complex that is highly conserved across the Phylum Apicomplexa. Two key components of this complex are the class XIV unconventional myosin, TgMyoA, and its associated light chain, TgMLC1. We previously showed that treatment of parasites with a small-molecule inhibitor of T. gondii invasion and motility, tachypleginA, induces an electrophoretic mobility shift of TgMLC1 that is associated with decreased myosin motor activity. However, the direct target(s) of tachypleginA and the molecular basis of the compound-induced TgMLC1 modification were unknown. We show here by ''click'' chemistry labelling that TgMLC1 is a direct and covalent target of an alkyne-derivatized analogue of tachypleginA. We also show that this analogue can covalently bind to model thiol substrates. The electrophoretic mobility shift induced by another structural analogue, tachypleginA-2, was associated with the formation of a 225.118 Da adduct on S57 and/or C58, and treatment with deuterated tachypleginA-2 confirmed that the adduct was derived from the compound itself. Recombinant TgMLC1 containing a C58S mutation (but not S57A) was refractory to click labelling and no longer exhibited a mobility shift in response to compound treatment, identifying C58 as the site of compound binding on TgMLC1. Finally, a knock-in parasite line expressing the C58S mutation showed decreased sensitivity to compound treatment in a quantitative 3D motility assay. These data strongly support a model in which tachypleginA and its analogues inhibit the motility of T. gondii by binding directly and covalently to C58 of TgMLC1, thereby causing a decrease in the activity of the parasite's myosin motor. Publisher PDFPeer reviewe

    Review of Experimental Compounds Demonstrating Anti-Toxoplasma Activity

    Get PDF
    Toxoplasma gondii is a ubiquitous apicomplexan parasite capable of infecting humans and other animals. Current treatment options for T. gondii infection are limited and most have drawbacks, including high toxicity and low tolerability. Additionally, no FDA-approved treatments are available for pregnant women, a high-risk population due to transplacental infection. Therefore, the development of novel treatment options is needed. To aid this effort, this review highlights experimental compounds that, at a minimum, demonstrate inhibition of in vitro growth of T. gondii. When available, host cell toxicity and in vivo data are also discussed. The purpose of this review is to facilitate additional development of anti-Toxoplasma compounds and potentially to extend our knowledge of the parasite

    Functional analyses of Plasmodium Falciparum primary metabolic genes

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    2-Amino-1,3,4-thiadiazoles as prospective agents in trypanosomiasis and other parasitoses

    Get PDF
    Parasitic diseases are a serious public health problem affecting hundreds of millions of people worldwide. African trypanosomiasis, American trypanosomiasis, leishmaniasis, malaria and toxoplasmosis are the main parasitic infections caused by protozoan parasites with over one million deaths each year. Due to old medications and drug resistance worldwide, there is an urgent need for new antiparasitic drugs. 1,3,4-Thiadiazoles have been widely studied for medical applications. The chemical, physical and pharmacokinetic properties recommend 1,3,4-thiadiazole ring as a target in drug development. Many scientific papers report the antiparasitic potential of 2-amino-1,3,4-thiadiazoles. This review presents synthetic 2-amino-1,3,4-thiadiazoles exhibiting antitrypanosomal, antimalarial and antitoxoplasmal activities. Although there are insufficient results to state the quality of 2-amino-1,3,4-thiadiazoles as a new class of antiparasitic agents, many reported derivatives can be considered as lead compounds for drug synthesis and a promise for the future treatment of parasitosis and provide a valid strategy for the development of potent antiparasitic drugs

    Paving the Way:Contributions of Big Data to Apicomplexan and Kinetoplastid Research

    Get PDF
    In the age of big data an important question is how to ensure we make the most out of the resources we generate. In this review, we discuss the major methods used in Apicomplexan and Kinetoplastid research to produce big datasets and advance our understanding of Plasmodium, Toxoplasma, Cryptosporidium, Trypanosoma and Leishmania biology. We debate the benefits and limitations of the current technologies, and propose future advancements that may be key to improving our use of these techniques. Finally, we consider the difficulties the field faces when trying to make the most of the abundance of data that has already been, and will continue to be, generated

    Cost-Effective Sequencing of Full-Length cDNA Clones Powered by a De Novo-Reference Hybrid Assembly

    Get PDF
    Sequencing full-length cDNA clones is important to determine gene structures including alternative splice forms, and provides valuable resources for experimental analyses to reveal the biological functions of coded proteins. However, previous approaches for sequencing cDNA clones were expensive or time-consuming, and therefore, a fast and efficient sequencing approach was demanded., to confirm that its ability was competent even for non-human species.The entire sequencing and shotgun assembly takes less than 1 week and the consumables cost only ∼US$3 per clone, demonstrating a significant advantage over previous approaches

    Structure-function studies of class I aldolases - exploring novel activities : mechanism, moonlighting, and inhibition

    Full text link
    La fructose-1,6-bisphosphate aldolase de classe I est une enzyme glycolytique (EC 4.1.2.13) qui catalyse le clivage réversible du fructose-1,6-bisphosphate (FBP) en dihydroxyacétone phosphate (DHAP) et glycéraldéhyde-3-phosphate (G3P). Des années de recherche sur FBP aldolase ont permis d’identifier les résidus impliqués dans son mécanisme réactionnel, ont tracé en grande partie les coordonnées de la réaction, ont révélé de nouvelles fonctions dites « moonlighting », et ont validé l’aldolase comme une cible attrayante pour des applications anti-glycolytiques tel que le cancer. Il existe néanmoins des questions en suspens relatives à ces activités que nous avons étudiées. Tout d'abord, la trajectoire détaillée de l'aldéhyde relatif à sa liaison au site actif allant jusqu’à la formation du lien carbone-carbone par condensation aldolique est indéfini. Pour élucider les détails moléculaires liés à ces événements, nous avons déterminé des structures cristallographiques à hautes résolution de l’aldolase de classe I chez Toxoplasma gondii, qui porte une identité de séquence élevée avec l’aldolase humaine (57%), en complexe avec l’intermédiaire ternaire de pré-condensation. Le complexe ternaire révèle un mode de liaison non-productive inhabituel pour G3P dans une configuration cis qui permet l’alignement de l'aldéhyde à proximité du nucléophile naissant. La configuration compétente pour la condensation aldolique provient d'une transposition cis-trans de l'aldéhyde qui produit une liaison hydrogène courte permettant la polarisation de l'aldéhyde et le transfert de proton au niveau de Glu-189. Nos résultats informent les chimistes synthétiques qui cherchent à développer l’aldolase comme biocatalyseur pour des réactions stéréo-contrôlées. Le rôle présumé de l’aldolase dans la production du méthyglyoxal (MGO), un métabolite dicarbonyle hautement réactif qui génère des « advanced glycation end products » (AGES) a également été étudié structurellement et enzymatiquement. Une enquête structurelle cristallographique de MGO générée par décomposition enzymatique chez l’aldolase de classe I a révélé que, contrairement aux indications préliminaires, l'apparition hypothétique de MGO et de phosphate inorganique (Pi) résultant de la décomposition enzymatique de DHAP dans le site actif de l’aldolase est mieux interprétée par une population mixte de DHAP et de molécules d'eau. Une étude enzymatique a révélé que la décomposition spontannée des trioses-phosphate est une source majeure de la production de MGO, alors qu’une production catalysée par l’aldolase est peu concluante. L’identification des sources de production de MGO continue d'être une priorité afin de développer des stratégies pour atténuer les manifestations cliniques de pathologies associées au MGO. La FBP aldolase est également reconnu pour ses activités « moonlighting » - du fait qu’elle effectue plus d'une activité sans rapport avec sa fonction glycolytique. Divers partenaires de l’aldolase sont rapportés dans la littérature, y compris les adhésines de surface cellulaire chez les parasites apicomplexes, dans lequel l’aldolase exécute une fonction d'échafaudage entre le complexe actomyosine et les adhésines - une interaction qui est décisive pour la motilité et l'invasion des cellules hôte. Le mode de liaison de cette interaction a été étudié et nos résultats sont compatibles avec une liaison au site actif. Les détails précis de cette interaction ont des implications thérapeutiques, étant donné que le ciblage de celui-ci réduit l'invasion des cellules hôte par les parasites. Enfin, l’aldolase de classe I est de plus en plus reconnu pour son potentiel comme cible anti-glycolytique dans les cellules qui sont fortement tributaires du flux glycolytique, comme les cellules cancéreuses et les parasites protozoaires. Le développement de nouveaux inhibiteurs de haute affinité est donc non seulement avantageux pour des études mécanistiques, mais représente un potentiel pharmacologique sans fin. Nous avons développé une nouvelle classe d’inhibiteurs de haute affinité de type inhibition lente et avons déterminé la base moléculaire de leur inhibition grâce à des structures cristallographiques à haute résolution et par un profilage enzymatique. Cette étude, qui combine plusieurs disciplines, y compris la cristallographie, enzymologie et chimie organique, souligne l'intérêt et l'importance d'une approche multidisciplinaire.Class I Fructose-1,6-bisphosphate aldolases are glycolytic enzymes (EC 4.1.2.13) that catalyze the reversible cleavage of fructose-1,6-bisphosphate (FBP) to dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (G3P). Years of research on FBP aldolases has identified residues implicated in the reaction mechanism, mapped the greater part of the reaction coordinates, and revealed novel moonlighting functions. Further, FBP aldolase is recognized as an attractive target for anti-glycolytic applications such as cancer. There are nevertheless outstanding questions related to these activities that were investigated in this thesis. First, the detailed trajectory of the reaction mechanism from aldehyde binding in the active site to carbon-carbon bond formation by aldol condensation is undefined. To elucidate the molecular details related to these events, we solved high-resolution crystallographic structures of native class I aldolase from Toxoplasma gondii, which has a high sequence identity with human aldolase (57 %), in complex with the pre-condensation ternary intermediate. The ternary complex reveals a condensation-incompetent binding mode for G3P in a cis-configuration that aligns the aldehyde alongside the nascent nucleophile. The productive aldol-competent configuration arises from a cis-trans rearrangement of the aldehyde that produces a short hydrogen bond required for polarization of the aldehyde and coincident proton transfer at Glu-189. Our results inform synthetic chemists seeking to develop aldolases for stereo-controlled reactions in biosynthetic applications. The suspected role of aldolase in methylglyoxal (MGO) production, a highly reactive dicarbonyl metabolite that produces advanced glycation end-products (AGES) was also probed structurally and enzymatically. A crystallographic structural investigation of MGO generated by enzymatic decomposition in class I aldolase revealed that, contrary to preliminary indications, the appearance of MGO and inorganic phosphate (Pi) resulting from enzymatic decomposition of DHAP in the active site of aldolase is more appropriately modeled by a mixed population of DHAP and water molecules. Enzymatic investigation revealed triose-phosphate decomposition to be a major source of MGO production, whereas production by aldolase did not exceed assay background levels. Identifying the main sources of MGO production continues to be a priority for mitigating the clinical manifestations of MGO-derived pathologies. FBP aldolase is also recognized for its moonlighting properties – performing more than one activity unrelated to the glycolytic function. Diverse aldolase partners are reported, including cell surface adhesins in apicomplexan parasites, in which aldolase performs a bridging function between the actomyosin complex and the cytoplasmic domain of the adhesins – an interaction that is crucial for motility and host-cell invasion. The binding mode of this interaction was investigated and our results are consistent with active site binding. The precise details of aldolase-adhesin binding has therapeutic implications, since targeting of the latter reduces host-cell invasion by parasites. Finally, class I aldolase is gaining prominence as an anti-glycolytic target in cells that are highly dependent on glycolytic flux, such as cancer cells and protozoan parasites. Developing new high-affinity inhibitors for these enzymes is therefore not only advantageous for mechanistic studies, but has endless pharmacological potential. We developed a novel class of high-affinity aldolase inhibitors, bisphosphonates, and determined the molecular basis of their inhibition with high-resolution crystallographic structures and enzymatic profiling. This study, which combined several disciplines, including crystallography, enzymology, and organic chemistry, underscores the interest and significance of a multidisciplinary approach

    Purine salvage enzymes as targets for the chemotherapeutic treatment of parasitic diseases

    No full text
    The review analyses the results showing that technological advances in studying the specific target molecules in a cell allow to develop new effective drugs for the treatment of a number of human maladies. The new approach to the drug design is based In the data of enzyme structure.В огляді проаналізовано результати, які показують, що досягнення у вивченні специ­фічних молекул-мішеней клітини дозволяють розробляти ефективні лікарськи засоби для лікування багатьох захворювань людини. Встановлено, що новий підхід до розробки таких медикаментів базується на дослідженні структури молекули фермента.Обзор анализирует результаты, показывающие, что достижения в изучении специфических молекул-мишеней клетки позволяют разрабатывать эффективные лекарственные средства для лечения многих заболеваний человека. Установлено, что новый подход к разработке таких медикаментов основан на исследовании структуры молекулы фермента
    corecore