25 research outputs found

    Mapping and Deep Analysis of Image Dehazing: Coherent Taxonomy, Datasets, Open Challenges, Motivations, and Recommendations

    Get PDF
    Our study aims to review and analyze the most relevant studies in the image dehazing field. Many aspects have been deemed necessary to provide a broad understanding of various studies that have been examined through surveying the existing literature. These aspects are as follows: datasets that have been used in the literature, challenges that other researchers have faced, motivations, and recommendations for diminishing the obstacles in the reported literature. A systematic protocol is employed to search all relevant articles on image dehazing, with variations in keywords, in addition to searching for evaluation and benchmark studies. The search process is established on three online databases, namely, IEEE Xplore, Web of Science (WOS), and ScienceDirect (SD), from 2008 to 2021. These indices are selected because they are sufficient in terms of coverage. Along with definition of the inclusion and exclusion criteria, we include 152 articles to the final set. A total of 55 out of 152 articles focused on various studies that conducted image dehazing, and 13 out 152 studies covered most of the review papers based on scenarios and general overviews. Finally, most of the included articles centered on the development of image dehazing algorithms based on real-time scenario (84/152) articles. Image dehazing removes unwanted visual effects and is often considered an image enhancement technique, which requires a fully automated algorithm to work under real-time outdoor applications, a reliable evaluation method, and datasets based on different weather conditions. Many relevant studies have been conducted to meet these critical requirements. We conducted objective image quality assessment experimental comparison of various image dehazing algorithms. In conclusions unlike other review papers, our study distinctly reflects different observations on image dehazing areas. We believe that the result of this study can serve as a useful guideline for practitioners who are looking for a comprehensive view on image dehazing

    NEW TECHNIQUES IN DERIVATIVE DOMAIN IMAGE FUSION AND THEIR APPLICATIONS

    Get PDF
    There are many applications where multiple images are fused to form a single summary greyscale or colour output, including computational photography (e.g. RGB-NIR), diffusion tensor imaging (medical), and remote sensing. Often, and intuitively, image fusion is carried out in the derivative domain (based on image gradients). In this thesis, we propose new derivative domain image fusion methods and metrics, and carry out experiments on a range of image fusion applications. After reviewing previous relevant methods in derivative domain image fusion, we make several new contributions. We present new applications for the Spectral Edge image fusion method, in thermal image fusion (using a FLIR smartphone accessory) and near-infrared image fusion (using an integrated visible and near-infrared sensor). We propose extensions of standard objective image fusion quality metrics for M to N channel image fusion measuring image fusion performance is an unsolved problem. Finally, and most importantly, we propose new methods in image fusion, which give improved results compared to previous methods (based on metric and subjective comparisons): we propose an iterative extension to the Spectral Edge image fusion method, producing improved detail transfer and colour vividness, and we propose a new derivative domain image fusion method, based on ļ¬nding a local linear combination of input images to produce an output image with optimum gradient detail, without artefacts - this mapping can be calculated by ļ¬nding the principal characteristic vector of the outer product of the Jacobian matrix of image derivatives, or by solving a least-squares regression (with regularization) to the target gradients calculated by the Spectral Edge theorem. We then use our new image fusion method on a range of image fusion applications, producing state of the art image fusion results with the potential for real-time performance

    RGB-D And Thermal Sensor Fusion: A Systematic Literature Review

    Full text link
    In the last decade, the computer vision field has seen significant progress in multimodal data fusion and learning, where multiple sensors, including depth, infrared, and visual, are used to capture the environment across diverse spectral ranges. Despite these advancements, there has been no systematic and comprehensive evaluation of fusing RGB-D and thermal modalities to date. While autonomous driving using LiDAR, radar, RGB, and other sensors has garnered substantial research interest, along with the fusion of RGB and depth modalities, the integration of thermal cameras and, specifically, the fusion of RGB-D and thermal data, has received comparatively less attention. This might be partly due to the limited number of publicly available datasets for such applications. This paper provides a comprehensive review of both, state-of-the-art and traditional methods used in fusing RGB-D and thermal camera data for various applications, such as site inspection, human tracking, fault detection, and others. The reviewed literature has been categorised into technical areas, such as 3D reconstruction, segmentation, object detection, available datasets, and other related topics. Following a brief introduction and an overview of the methodology, the study delves into calibration and registration techniques, then examines thermal visualisation and 3D reconstruction, before discussing the application of classic feature-based techniques as well as modern deep learning approaches. The paper concludes with a discourse on current limitations and potential future research directions. It is hoped that this survey will serve as a valuable reference for researchers looking to familiarise themselves with the latest advancements and contribute to the RGB-DT research field.Comment: 33 pages, 20 figure

    Application of Multi-Sensor Fusion Technology in Target Detection and Recognition

    Get PDF
    Application of multi-sensor fusion technology has drawn a lot of industrial and academic interest in recent years. The multi-sensor fusion methods are widely used in many applications, such as autonomous systems, remote sensing, video surveillance, and the military. These methods can obtain the complementary properties of targets by considering multiple sensors. On the other hand, they can achieve a detailed environment description and accurate detection of interest targets based on the information from different sensors.This book collects novel developments in the field of multi-sensor, multi-source, and multi-process information fusion. Articles are expected to emphasize one or more of the three facets: architectures, algorithms, and applications. Published papers dealing with fundamental theoretical analyses, as well as those demonstrating their application to real-world problems

    Electrification of Smart Cities

    Get PDF
    Electrification plays a key role in decarbonizing energy consumption for various sectors, including transportation, heating, and cooling. There are several essential infrastructures for a smart city, including smart grids and transportation networks. These infrastructures are the complementary solutions to successfully developing novel services, with enhanced energy efficiency and energy security. Five papers are published in this Special Issue that cover various key areas expanding the state-of-the-art in smart citiesā€™ electrification, including transportation, healthcare, and advanced closed-circuit televisions for smart city surveillance

    Vision Sensors and Edge Detection

    Get PDF
    Vision Sensors and Edge Detection book reflects a selection of recent developments within the area of vision sensors and edge detection. There are two sections in this book. The first section presents vision sensors with applications to panoramic vision sensors, wireless vision sensors, and automated vision sensor inspection, and the second one shows image processing techniques, such as, image measurements, image transformations, filtering, and parallel computing

    Multisensory Imagery Cues for Object Separation, Specularity Detection and Deep Learning based Inpainting

    Full text link
    Multisensory imagery cues have been actively investigated in diverse applications in the computer vision community to provide additional geometric information that is either absent or difficult to capture from mainstream two-dimensional imaging. The inherent features of multispectral polarimetric light field imagery (MSPLFI) include object distribution over spectra, surface properties, shape, shading and pixel flow in light space. The aim of this dissertation is to explore these inherent properties to exploit new structures and methodologies for the tasks of object separation, specularity detection and deep learning-based inpainting in MSPLFI. In the first part of this research, an application to separate foreground objects from the background in both outdoor and indoor scenes using multispectral polarimetric imagery (MSPI) cues is examined. Based on the pixel neighbourhood relationship, an on-demand clustering technique is proposed and implemented to separate artificial objects from natural background in a complex outdoor scene. However, due to indoor scenes only containing artificial objects, with vast variations in energy levels among spectra, a multiband fusion technique followed by a background segmentation algorithm is proposed to separate the foreground from the background. In this regard, first, each spectrum is decomposed into low and high frequencies using the fast Fourier transform (FFT) method. Second, principal component analysis (PCA) is applied on both frequency images of the individual spectrum and then combined with the first principal components as a fused image. Finally, a polarimetric background segmentation (BS) algorithm based on the Stokes vector is proposed and implemented on the fused image. The performance of the proposed approaches are evaluated and compared using publicly available MSPI datasets and the dice similarity coefficient (DSC). The proposed multiband fusion and BS methods demonstrate better fusion quality and higher segmentation accuracy compared with other studies for several metrics, including mean absolute percentage error (MAPE), peak signal-to-noise ratio (PSNR), Pearson correlation coefficient (PCOR) mutual information (MI), accuracy, Geometric Mean (G-mean), precision, recall and F1-score. In the second part of this work, a twofold framework for specular reflection detection (SRD) and specular reflection inpainting (SRI) in transparent objects is proposed. The SRD algorithm is based on the mean, the covariance and the Mahalanobis distance for predicting anomalous pixels in MSPLFI. The SRI algorithm first selects four-connected neighbouring pixels from sub-aperture images and then replaces the SRD pixel with the closest matched pixel. For both algorithms, a 6D MSPLFI transparent object dataset is captured from multisensory imagery cues due to the unavailability of this kind of dataset. The experimental results demonstrate that the proposed algorithms predict higher SRD accuracy and better SRI quality than the existing approaches reported in this part in terms of F1-score, G-mean, accuracy, the structural similarity index (SSIM), the PSNR, the mean squared error (IMMSE) and the mean absolute deviation (MAD). However, due to synthesising SRD pixels based on the pixel neighbourhood relationship, the proposed inpainting method in this research produces artefacts and errors when inpainting large specularity areas with irregular holes. Therefore, in the last part of this research, the emphasis is on inpainting large specularity areas with irregular holes based on the deep feature extraction from multisensory imagery cues. The proposed six-stage deep learning inpainting (DLI) framework is based on the generative adversarial network (GAN) architecture and consists of a generator network and a discriminator network. First, pixelsā€™ global flow in the sub-aperture images is calculated by applying the large displacement optical flow (LDOF) method. The proposed training algorithm combines global flow with local flow and coarse inpainting results predicted from the baseline method. The generator attempts to generate best-matched features, while the discriminator seeks to predict the maximum difference between the predicted results and the actual results. The experimental results demonstrate that in terms of the PSNR, MSSIM, IMMSE and MAD, the proposed DLI framework predicts superior inpainting quality to the baseline method and the previous part of this research

    Intelligent Transportation Related Complex Systems and Sensors

    Get PDF
    Building around innovative services related to different modes of transport and traffic management, intelligent transport systems (ITS) are being widely adopted worldwide to improve the efficiency and safety of the transportation system. They enable users to be better informed and make safer, more coordinated, and smarter decisions on the use of transport networks. Current ITSs are complex systems, made up of several components/sub-systems characterized by time-dependent interactions among themselves. Some examples of these transportation-related complex systems include: road traffic sensors, autonomous/automated cars, smart cities, smart sensors, virtual sensors, traffic control systems, smart roads, logistics systems, smart mobility systems, and many others that are emerging from niche areas. The efficient operation of these complex systems requires: i) efficient solutions to the issues of sensors/actuators used to capture and control the physical parameters of these systems, as well as the quality of data collected from these systems; ii) tackling complexities using simulations and analytical modelling techniques; and iii) applying optimization techniques to improve the performance of these systems. It includes twenty-four papers, which cover scientific concepts, frameworks, architectures and various other ideas on analytics, trends and applications of transportation-related data

    Measurement model of brass plated tyre steel cord based on wave feature extraction

    Get PDF
    In the production of Truck and Bus Radial (TBR) vehicle tyres, one of the essential components is the wire that supports the tyre. There are several types of tyre wire, one of which is Brass Plated Tyre Steel Cord (BPTSC), produced by Bekaert Indonesia Company. BPTSC object has a micro-size with a diameter of 0.230 mm and has a wave shape. In checking the quality of steel straps, brass-coated tyres are usually measured manually by experienced experts by measuring instruments to measure the diameter using a micrometre, wave amount, and wavelength using a profile projector. The manual measurement process results in inaccuracy due to fatigue in employees' eyes and low lighting and must be repeated, thus, consuming more time. Technological developments that use computer vision are increasingly widespread. Moreover, from the results of studies in various literature, it is proposed to combine the models obtained to find new models to solve this problem. The objectives of this study were to implement and evaluate an automatic segmentation method for obtaining regions of interest, to propose a BPTSC diameter, wave amount, and wavelength measurement model based on its edge, and to evaluate the proposed model by comparing the results with standard and industrial measurement results. The technique to prepare the brass plated tyre steel cord was done in two ways: image acquisition techniques with enhanced image quality, noise removal, and edge detection. Secondly, ground truth techniques were utilised to find the truth about the stages of the image acquisition process. Finally, sensitivity testing was conducted to find the similarity between the acquired images and the ground truth data using Jaccard, Dice, and Cosine similarity method. From 148 wire samples, the average similarity value was 93% by Jaccard, 96% by Dice, and 91% by the Cosine method. Thus, it can be concluded that the acquisition stage of the brass-coated steel tyre cable with image processing techniques can be carried out. For the subsequent process, the pixel distance and the sliding windows model applied can correctly detect the diameter of the BPTSC properly. The wave amount and wavelength of BPTSC objects in the form of waves were measured using several local minima and maxima approaches. This included maxima of local minima maxima distance, the average of local minima maxima distance, and perpendicular shape to centre distance for measuring wave amounts. While for wavelength measurements, the midpoint of local maxima minima distance and the intersection of local maxima minima with a central line were used. Measurement results were evaluated to determine the accuracy and efficiency of the measurement process compared to standard production values using the accuracy, precision, recall, and Root Mean Square Error (RMSE) test. From the evaluation results of the two methods, the accuracy rate of diameter measurement is 97%, wave rate measurement is 95%, and wavelength measurement is 90%. A new model was formed from the evaluation results that could solve these problems and provide scientific and beneficial contributions to society in general and the companies related to this industry

    Advances in Image Processing, Analysis and Recognition Technology

    Get PDF
    For many decades, researchers have been trying to make computersā€™ analysis of images as effective as the system of human vision is. For this purpose, many algorithms and systems have previously been created. The whole process covers various stages, including image processing, representation and recognition. The results of this work can be applied to many computer-assisted areas of everyday life. They improve particular activities and provide handy tools, which are sometimes only for entertainment, but quite often, they significantly increase our safety. In fact, the practical implementation of image processing algorithms is particularly wide. Moreover, the rapid growth of computational complexity and computer efficiency has allowed for the development of more sophisticated and effective algorithms and tools. Although significant progress has been made so far, many issues still remain, resulting in the need for the development of novel approaches
    corecore