99 research outputs found

    BEYOND ROOTS ALONE: NOVEL METHODOLOGIES FOR ANALYZING COMPLEX SOIL AND MINIRHIZOTRON IMAGERY USING IMAGE PROCESSING AND GIS TOOLS

    Get PDF
    Quantifying belowground dynamics is critical to our understanding of plant and ecosystem function and belowground carbon cycling, yet currently available tools for complex belowground image analyses are insufficient. We introduce novel techniques combining digital image processing tools and geographic information systems (GIS) analysis to permit semi-automated analysis of complex root and soil dynamics. We illustrate methodologies with imagery from microcosms, minirhizotrons, and a rhizotron, in upland and peatland soils. We provide guidelines for correct image capture, a method that automatically stitches together numerous minirhizotron images into one seamless image, and image analysis using image segmentation and classification in SPRING or change analysis in ArcMap. These methods facilitate spatial and temporal root and soil interaction studies, providing a framework to expand a more comprehensive understanding of belowground dynamics

    Segmentation of roots in soil with U-Net

    Get PDF
    Demonstration of the feasibility of a U-Net based CNN system for segmenting images of roots in soil and for replacing the manual line-intersect method

    EnRoot: a narrow, inexpensive and partially 3D-printable minirhizotron for imaging fine root production

    Get PDF
    Background Fine root production is one of the least well understood components of the carbon cycle in terrestrial ecosystems. Minirhizotrons allow accurate and non-destructive sampling of fine root production. Small and large scale studies across a range of ecosystems are needed to have baseline data on fine root production and further assess the impact of global change upon it; however, the expense and the low adaptability of minirhizotrons prevent such data collection, in worldwide distributed sampling schemes, in low-income countries and in some ecosystems (e.g. tropical forested wetlands). Results We present EnRoot, a narrow minirhizotron of 25 mm diameter, that is partially 3D printable. EnRoot is inexpensive (€150), easy to construct (no prior knowledge required) and adapted to a range of ecosystems including tropical forested wetlands (e.g. mangroves, peatlands). We tested EnRoot’s accuracy and precision for measuring fine root length and diameter, and it yielded Lin’s concordance correlation coefficient values of 0.95 for root diameter and 0.92 for length. As a proof of concept, we tested EnRoot in a mesocosm study, and in the field in a tropical mangrove. EnRoot proved its capacity to capture the development of roots of a legume (Medicago sativa) and a mangrove species (seedlings of Rhizophora mangle) in laboratory mesocosms. EnRoot’s field installation was possible in the root-dense tropical mangrove because its narrow diameter allowed it to be installed between larger roots and because it is fully waterproof. EnRoot compares favourably with commercial minirhizotrons, and can image roots as small as 56 µm. Conclusion EnRoot removes barriers to the extensive use of minirhizotrons by being low-cost, easy to construct and adapted to a wide range of ecosystem. It opens the doors to worldwide distributed minirhizotron studies across an extended range of ecosystems with the potential to fill knowledge gaps surrounding fine root production

    Real-Time Automatic Linear Feature Detection in Images

    Get PDF
    Linear feature detection in digital images is an important low-level operation in computer vision that has many applications. In remote sensing tasks, it can be used to extract roads, railroads, and rivers from satellite or low-resolution aerial images, which can be used for the capture or update of data for geographic information and navigation systems. In addition, it is useful in medical imaging for the extraction of blood vessels from an X-ray angiography or the bones in the skull from a CT or MR image. It also can be applied in horticulture for underground plant root detection in minirhizotron images. In this dissertation, a fast and automatic algorithm for linear feature extraction from images is presented. Under the assumption that linear feature is a sequence of contiguous pixels where the image intensity is locally maximal in the direction of the gradient, linear features are extracted as non-overlapping connected line segments consisting of these contiguous pixels. To perform this task, point process is used to model line segments network in images. Specific properties of line segments in an image are described by an intensity energy model. Aligned segments are favored while superposition is penalized. These constraints are enforced by an interaction energy model. Linear features are extracted from the line segments network by minimizing a modified Candy model energy function using a greedy algorithm whose parameters are determined in a data-driven manner. Experimental results from a collection of different types of linear features (underground plant roots, blood vessels and urban roads) in images demonstrate the effectiveness of the approach

    Effects of 11 Years of CO2 Enrichment on Root Biomass and Spatial Distribution in a Florida Scrub-Oak Ecosystem

    Get PDF
    A Florida (USA) scrub-oak ecosystem was exposed to elevated atmospheric CO2 in open-top chambers from 1996-2007. Minirhizotrons and ground-penetrating radar (GPR) were used to measure fine root (\u3c 2 mm diameter) and coarse root (\u3e 5 mm diameter) biomass, respectively. After 11 years of CO2 enrichment, there was a trend of greater total root biomass under elevated CO2. Fine root biomass exhibited a pattern of recovery and steady state throughout the study, with significant CO2 stimulation observed only after disturbance. Greater root biomass under elevated CO2 during recovery periods could result in greater carbon inputs belowground, alteration of the soil carbon cycle, and faster ecosystem recovery. At the end of the study, a greater proportion of fine root biomass was found deeper in the soil in plots exposed to elevated CO2. The shift of biomass deeper in the soil and pattern of recovery and steady state suggest a limit on the soils\u27 capacity to support fine roots. The dominant plants were not limited by water or nutrients, indicating that root responses to CO2 enrichment were likely constrained by soil resource space

    Root dynamics and below ground carbon input in a changing climate

    Get PDF
    • …
    corecore