85 research outputs found

    Cellulose-Based Biosensing Platforms

    Get PDF
    Cellulose empowers measurement science and technology with a simple, low-cost, and highly transformative analytical platform. This book helps the reader to understand and build an overview of the state of the art in cellulose-based (bio)sensing, particularly in terms of the design, fabrication, and advantageous analytical performance. In addition, wearable, clinical, and environmental applications of cellulose-based (bio)sensors are reported, where novel (nano)materials, architectures, signal enhancement strategies, as well as real-time connectivity and portability play a critical role

    The development and optimisation of a novel microfluidic immunoassay platform for point of care diagnostics

    Get PDF
    Protein biomarkers are important diagnostic tools for detection of non-communicable diseases, such as cancer and cardiovascular conditions. In order to be used as diagnostic tools they need to be detected at very low concentrations in biological samples (e.g. whole blood, serum or urine). This has been currently performed in central laboratories using expensive, bulky equipment and time consuming assays. [Continues.

    Developing Electrochemical Biosensors for Point-of-care Diagnostics of Cardiovascular Biomarkers

    Get PDF
    Troponin is known as a type of reliable biomarker for the detection of cardiac disorders. Cardiac troponin I (cTnI), as a subunit of troponin, is highly sensitive to cardiac injury; therefore, the cTnI level is used as an index to diagnose myocardial damage, particularly acute myocardial infarction. It can be also used in cardiospecific diagnosis, risk stratification therapeutic treatment and post risk management. In this research, an amperometric immunosensor was developed based on planar electrode and sandwich ELISA format. The electrical response corresponding to biological information was obtained via four main procedures, including electrode modification, immunoreaction, signal amplifications and amperometric detection. Enzyme labels such as horseradish peroxide (HRP) and alkaline phosphatase (ALP) were used for signals amplification. Since alkaline phosphatase works better in low background current levels and has great reproducibility, it was used for nanomaterials, chitosan, gold nanoparticle, carbon nanotube as electrode modification investigation. The anti-cTnI antibody is detectable by electrochemical technology. Necessary conditions and interferences of the experiment were examined. Detection range was from 0.001 ng ml-1 to 300 ng ml-1 on PDDA-MWCNT sensor, and from 0.02 ng ml-1 to 200 ng ml-1 on chitosan-AuNPs sensor. The detection range was investigated using cyclic voltammetry. The signal behavior recorded was linear to cTnI concentration. This behavior makes the developed biosensor be able to widely use in clinical practice. Likewise, two liquid substrates were catalyzed by hydroquinone and 3, 3’, 5, 5’-teteramethylbenzidine respectively. Hydrogen peroxide (H2O2) is a product of glucose oxidizes catalyzing the oxidation of β-D-glucose by oxygen. It is also used as an oxidizing agent in catalyzing HRP. Hence, an HRP-based immunosensor is important in integrating an immunosensor and an enzyme sensor for the purpose of achieving multianalyte detection compacted on one chip. The cTnI immunosensor developed here is rapid, easy-to-use, cost-efficient and robust

    Capillary Microfluidic Chips for Point-of-Care Testing:from Research Tools to Decentralized Medical Diagnostics

    Get PDF
    Research on microfluidic devices for biological analysis has progressed sufficiently to be developed into point-of-care diagnostics products. The goal of this thesis is to improve multiple aspects of capillary-driven microfluidic devices. In particular, the objective is to provide devices with a fast time to result, that are simple to use (one-step), that can be portable, that accept a variety of samples, that operate reliably, that provide a range of detection signals, that are mass manufacturable at lost cost, and that are able to detect medically relevant biological molecules. First, we survey the evolution of microfluidic research into portable medical diagnostic devices. By looking at several gaps and opportunities in current medical diagnostics, we provide an overview of research topics that have the potential to shape the next generation of point-of-care diagnostics. Specifically we explain technologies in the order of sample interacting with different components of a device. We investigate the materials, surface treatments, sample processing, microfluidic elements (such as valves, pumps and mixers), receptors and analytes and the integration of these components into a device that might conceivably leave the laboratory for the hands of consumers. The knowledge of what is important in a point-of-care diagnostics device was used to develop a proof of concept. One of the main challenges is to make microfluidics easy to use by incorporating reagents and microfluidic elements. We integrated a number of functional elements on a chip such as a sample collector, delay valves, flow resistors, a deposition zone for detection antibodies (dAbs), a reaction chamber sealed with a polydimethylsiloxane (PDMS) substrate, and a capillary pump and vents. We further incorporated capture antibodies (cAbs), detection antibodies (dAbs) and analyte molecules for making one-step immunoassays. The integrated microfluidic chip requires only the addition of sample to trigger a sequence of events controlled by capillary forces to detect C-reactive protein (CRP), a general inflammation and cardiac marker, at a concentration of 1 ng mL-1 within 14 min using only 5 µL of human serum. The proof-of-concept is extended to easily modify several assay parameters such as the flow rates and the volumes of samples for tests, and the type of reagents and receptors for analytes. The multiparametric microfluidic chip is capable of analyzing 20 µL of human serum in 6 parallel flow paths in a range of flow rates with filling times from 10 minutes to 72 minutes. The asymmetric release of dAbs in a stream of human serum is compensated by a Dean flow mixer. Sample is equally split into 6 reaction chambers connected to flow resistances that vary flow rates, and the kinetics of capture of analyte-dAb complexes. The increased incubation time leads to a fourfold increase in detection signal in the reaction chamber with the longer incubation time. Furthermore, integrating reagents and controlling their release is essential for simple and accurate point-of-care diagnostic devices. We developed reagent integrators (RIs) to release small amounts of dried reagents (ng quantities and less) into microliters of sample. Typical RIs are composed of an inlet splitting into a central reagent channel, with a high hydraulic resistance, and two diluter channels. Reagents spotted in the central channel reconstitute in sample during filling and merge at the end of the RI with a dilution factor corresponding to the relative hydraulic resistance of the channels forming the RI. RIs are simple to integrate in lateral flow assays and provide a great degree of control over reagent integration and dissolution. Finally, the one-step capillary-driven microfluidic chips have the ability to not only detect a variety of proteins, but also to detect nucleic acids for molecular diagnostics. These devices, especially if manufactured in low cost plastic and used with portable fluorescence readers, have the potential to identify a wide variety of health conditions and to enable truly decentralized medical diagnostics

    Recent Progress in Optical Sensors for Biomedical Diagnostics

    Get PDF
    In recent years, several types of optical sensors have been probed for their aptitude in healthcare biosensing, making their applications in biomedical diagnostics a rapidly evolving subject. Optical sensors show versatility amongst different receptor types and even permit the integration of different detection mechanisms. Such conjugated sensing platforms facilitate the exploitation of their neoteric synergistic characteristics for sensor fabrication. This paper covers nearly 250 research articles since 2016 representing the emerging interest in rapid, reproducible and ultrasensitive assays in clinical analysis. Therefore, we present an elaborate review of biomedical diagnostics with the help of optical sensors working on varied principles such as surface plasmon resonance, localised surface plasmon resonance, evanescent wave fluorescence, bioluminescence and several others. These sensors are capable of investigating toxins, proteins, pathogens, disease biomarkers and whole cells in varied sensing media ranging from water to buffer to more complex environments such as serum, blood or urine. Hence, the recent trends discussed in this review hold enormous potential for the widespread use of optical sensors in early-stage disease prediction and point-of-care testing devices.DFG, 428780268, Biomimetische Rezeptoren auf NanoMIP-Basis zur Virenerkennung und -entfernung mittels integrierter Ansätz

    Ultrafast Microfluidic Immunoassays Towards Real-time Intervention of Cytokine Storms

    Full text link
    Biomarker-guided precision medicine holds great promise to provide personalized therapy with a good understanding of the molecular or cellular data of an individual patient. However, implementing this approach in critical care uniquely faces enormous challenges as it requires obtaining “real-time” data with high sensitivity, reliability, and multiplex capacity near the patient’s bedside in the quickly evolving illness. Current immunodiagnostic platforms generally compromise assay sensitivity and specificity for speed or face significantly increased complexity and cost for highly multiplexed detection with low sample volume. This thesis introduces two novel ultrafast immunoassay platforms: one is a machine learning-based digital molecular counting assay, and the other is a label-free nano-plasmonic sensor integrated with an electrokinetic mixer. Both of them incorporate microfluidic approaches to pave the way for near-real-time interventions of cytokine storms. In the first part of the thesis, we present an innovative concept and the theoretical study that enables ultrafast measurement of multiple protein biomarkers (<1 min assay incubation) with comparable sensitivity to the gold standard ELISA method. The approach, which we term “pre-equilibrium digital enzyme-linked immunosorbent assay” (PEdELISA) incorporates the single-molecular counting of proteins at the early, pre-equilibrium state to achieve the combination of high speed and sensitivity. We experimentally demonstrated the assay’s application in near-real-time monitoring of patients receiving chimeric antigen receptor (CAR) T-cell therapy and for longitudinal serum cytokine measurements in a mouse sepsis model. In the second part, we report the further development of a machine learning-based PEdELISA microarray data analysis approach with a significantly extended multiplex capacity using the spatial-spectral microfluidic encoding technique. This unique approach, together with a convolutional neural network-based image analysis algorithm, remarkably reduced errors faced by the highly multiplexed digital immunoassay at low analyte concentrations. As a result, we demonstrated the longitudinal data collection of 14 serum cytokines in human patients receiving CAR-T cell therapy at concentrations < 10pg/mL with a sample volume < 10 µL and 5-min assay incubation. In the third part, we demonstrate the clinical application of a machine learning-based digital protein microarray platform for rapid multiplex quantification of cytokines from critically ill COVID-19 patients admitted to the intensive care unit. The platform comprises two low-cost modules: (i) a semi-automated fluidic dispensing module that can be operated inside a biosafety cabinet to minimize the exposure of technician to the virus infection and (ii) a compact fluorescence optical scanner for the potential near-bedside readout. The automated system has achieved high interassay precision (~10% CV) with high sensitivity (<0.4pg/mL). Our data revealed large subject-to-subject variability in patient responses to anti-inflammatory treatment for COVID-19, reaffirming the need for a personalized strategy guided by rapid cytokine assays. Lastly, an AC electroosmosis-enhanced localized surface plasmon resonance (ACE-LSPR) biosensing device was presented for rapid analysis of cytokine IL-1β among sepsis patients. The ACE-LSPR device is constructed using both bottom-up and top-down sensor fabrication methods, allowing the seamless integration of antibody-conjugated gold nanorod (AuNR) biosensor arrays with microelectrodes on the same microfluidic platform. Applying an AC voltage to microelectrodes while scanning the scattering light intensity variation of the AuNR biosensors results in significantly enhanced biosensing performance. The technologies developed have enabled new capabilities with broad application to advance precision medicine of life-threatening acute illnesses in critical care, which potentially will allow the clinical team to make individualized treatment decisions based on a set of time-resolved biomarker signatures.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163129/1/yujing_1.pd

    Developments in Transduction, Connectivity and AI/Machine Learning for Point-of-Care Testing

    Get PDF
    We review some emerging trends in transduction, connectivity and data analytics for Point-of-Care Testing (POCT) of infectious and non-communicable diseases. The patient need for POCT is described along with developments in portable diagnostics, specifically in respect of Lab-on-chip and microfluidic systems. We describe some novel electrochemical and photonic systems and the use of mobile phones in terms of hardware components and device connectivity for POCT. Developments in data analytics that are applicable for POCT are described with an overview of data structures and recent AI/Machine learning trends. The most important methodologies of machine learning, including deep learning methods, are summarised. The potential value of trends within POCT systems for clinical diagnostics within Lower Middle Income Countries (LMICs) and the Least Developed Countries (LDCs) are highlighted

    Pursuing precision in medicine and nutrition: the rise of electrochemical biosensing at the molecular level

    Get PDF
    In the era that we seek personalization in material things, it is becoming increasingly clear that the individualized management of medicine and nutrition plays a key role in life expectancy and quality of life, allowing participation to some extent in our welfare and the use of societal resources in a rationale and equitable way. The implementation of precision medicine and nutrition are highly complex challenges which depend on the development of new technologies able to meet important requirements in terms of cost, simplicity, and versatility, and to determine both individually and simultaneously, almost in real time and with the required sensitivity and reliability, molecular markers of different omics levels in biofluids extracted, secreted (either naturally or stimulated), or circulating in the body. Relying on representative and pioneering examples, this review article critically discusses recent advances driving the position of electrochemical bioplatforms as one of the winning horses for the implementation of suitable tools for advanced diagnostics, therapy, and precision nutrition. In addition to a critical overview of the state of the art, including groundbreaking applications and challenges ahead, the article concludes with a personal vision of the imminent roadmap.The financial support of PID2019-103899RBI00 (Spanish Ministerio de Ciencia e Innovación), and PMP22/00084, PI17CIII/00045, PI20CIII/00019 and PI22/00727 (AES-ISCIII) cofounded with FEDER funds Research Projects and the TRANSNANOAVANSENS-CM Program from the Comunidad de Madrid (Grant S2018/NMT-4349) are gratefully acknowledged. Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.S

    Paper as smart support for bioreceptor immobilization in electrochemical paper-based devices

    Get PDF
    The use of paper as a smart support in the field of electrochemical sensors has been largely improved over the last 15 years, driven by its outstanding features such as foldability and porosity, which enable the design of reagent and equipment-free multi-analysis devices. Furthermore, the easy surface engineering of paper has been used to immobilize different bioreceptors, through physical adsorption, covalent bonding, and electrochemical poly-merization, boosting the fine customization of the analytical performances of paper-based biosensors. In this review, we focused on the strategies to engineer the surface of the paper for the immobilization of (bio)recog-nition elements (eg., enzymes, antibodies, DNA, molecularly imprinted polymers) with the overriding goal to develop accurate and reliable paper-based electrochemical biosensors. Furthermore, we highlighted how to take advantage of paper for designing smart configurations by integrating different analytical processes in an eco-designed analytical tool, starting from the immobilization of the (bio)receptor and the reagents, through a designed sample flow along the device, until the analyte detection

    Designing Paper-Based Immunoassays for Biomedical Applications

    Get PDF
    Paper-based sensors and assays have been highly attractive for numerous biological applications, including rapid diagnostics and assays for disease detection, food safety, and clinical care. In particular, the paper immunoassay has helped drive many applications in global health due to its low cost and simplicity of operation. This review is aimed at examining the fundamentals of the technology, as well as different implementations of paper-based assays and discuss novel strategies for improving their sensitivity, performance, or enabling new capabilities. These innovations can be categorized into using unique nanoparticle materials and structures for detection via different techniques, novel biological species for recognizing biomarkers, or innovative device design and/or architecture
    corecore