16,052 research outputs found

    The role of microtubule movement in bidirectional organelle transport

    Get PDF
    We study the role of microtubule movement in bidirectional organelle transport in Drosophila S2 cells and show that EGFP-tagged peroxisomes in cells serve as sensitive probes of motor induced, noisy cytoskeletal motions. Multiple peroxisomes move in unison over large time windows and show correlations with microtubule tip positions, indicating rapid microtubule fluctuations in the longitudinal direction. We report the first high-resolution measurement of longitudinal microtubule fluctuations performed by tracing such pairs of co-moving peroxisomes. The resulting picture shows that motor-dependent longitudinal microtubule oscillations contribute significantly to cargo movement along microtubules. Thus, contrary to the conventional view, organelle transport cannot be described solely in terms of cargo movement along stationary microtubule tracks, but instead includes a strong contribution from the movement of the tracks.Comment: 24 pages, 5 figure

    New control strategies for neuroprosthetic systems

    Get PDF
    The availability of techniques to artificially excite paralyzed muscles opens enormous potential for restoring both upper and lower extremity movements with\ud neuroprostheses. Neuroprostheses must stimulate muscle, and control and regulate the artificial movements produced. Control methods to accomplish these tasks include feedforward (open-loop), feedback, and adaptive control. Feedforward control requires a great deal of information about the biomechanical behavior of the limb. For the upper extremity, an artificial motor program was developed to provide such movement program input to a neuroprosthesis. In lower extremity control, one group achieved their best results by attempting to meet naturally perceived gait objectives rather than to follow an exact joint angle trajectory. Adaptive feedforward control, as implemented in the cycleto-cycle controller, gave good compensation for the gradual decrease in performance observed with open-loop control. A neural network controller was able to control its system to customize stimulation parameters in order to generate a desired output trajectory in a given individual and to maintain tracking performance in the presence of muscle fatigue. The authors believe that practical FNS control systems must\ud exhibit many of these features of neurophysiological systems

    Long-tail Behavior in Locomotion of Caenorhabditis elegans

    Full text link
    The locomotion of Caenorhabditis elegans exhibits complex patterns. In particular, the worm combines mildly curved runs and sharp turns to steer its course. Both runs and sharp turns of various types are important components of taxis behavior. The statistics of sharp turns have been intensively studied. However, there have been few studies on runs, except for those on klinotaxis (also called weathervane mechanism), in which the worm gradually curves toward the direction with a high concentration of chemicals; this phenomenon was discovered recently. We analyzed the data of runs by excluding sharp turns. We show that the curving rate obeys long-tail distributions, which implies that large curving rates are relatively frequent. This result holds true for locomotion in environments both with and without a gradient of NaCl concentration; it is independent of klinotaxis. We propose a phenomenological computational model on the basis of a random walk with multiplicative noise. The assumption of multiplicative noise posits that the fluctuation of the force is proportional to the force exerted. The model reproduces the long-tail property present in the experimental data.Comment: 30 pages, 11 figures, some errors were correcte

    Dimensionality and dynamics in the behavior of C. elegans

    Get PDF
    A major challenge in analyzing animal behavior is to discover some underlying simplicity in complex motor actions. Here we show that the space of shapes adopted by the nematode C. elegans is surprisingly low dimensional, with just four dimensions accounting for 95% of the shape variance, and we partially reconstruct "equations of motion" for the dynamics in this space. These dynamics have multiple attractors, and we find that the worm visits these in a rapid and almost completely deterministic response to weak thermal stimuli. Stimulus-dependent correlations among the different modes suggest that one can generate more reliable behaviors by synchronizing stimuli to the state of the worm in shape space. We confirm this prediction, effectively "steering" the worm in real time.Comment: 9 pages, 6 figures, minor correction

    Good vibrations: Guiding body movements with vibrotactile feedback

    Get PDF
    We describe the ongoing development of a system to support the teaching of good posture and bowing technique to novice violin players. Using an inertial motion capture system we can track in real-time a player’s bowing action and how it deviates from a target trajectory set by their music teacher. The system provides real-time vibrotactile feedback on the correctness of the student’s posture and bowing action. We present the findings of an initial study that shows that vibrotactile feedback can guide arm movements in one and two dimension pointing tasks. The advantages of vibrotactile feedback for teaching basic bowing technique to novice violin players are that it does not place demands on the students’ visual and auditory systems which are already heavily involved in the activity of music making, and is understood with little training

    Analog VLSI-Based Modeling of the Primate Oculomotor System

    Get PDF
    One way to understand a neurobiological system is by building a simulacrum that replicates its behavior in real time using similar constraints. Analog very large-scale integrated (VLSI) electronic circuit technology provides such an enabling technology. We here describe a neuromorphic system that is part of a long-term effort to understand the primate oculomotor system. It requires both fast sensory processing and fast motor control to interact with the world. A one-dimensional hardware model of the primate eye has been built that simulates the physical dynamics of the biological system. It is driven by two different analog VLSI chips, one mimicking cortical visual processing for target selection and tracking and another modeling brain stem circuits that drive the eye muscles. Our oculomotor plant demonstrates both smooth pursuit movements, driven by a retinal velocity error signal, and saccadic eye movements, controlled by retinal position error, and can reproduce several behavioral, stimulation, lesion, and adaptation experiments performed on primates

    A neural circuit for navigation inspired by C. elegans Chemotaxis

    Full text link
    We develop an artificial neural circuit for contour tracking and navigation inspired by the chemotaxis of the nematode Caenorhabditis elegans. In order to harness the computational advantages spiking neural networks promise over their non-spiking counterparts, we develop a network comprising 7-spiking neurons with non-plastic synapses which we show is extremely robust in tracking a range of concentrations. Our worm uses information regarding local temporal gradients in sodium chloride concentration to decide the instantaneous path for foraging, exploration and tracking. A key neuron pair in the C. elegans chemotaxis network is the ASEL & ASER neuron pair, which capture the gradient of concentration sensed by the worm in their graded membrane potentials. The primary sensory neurons for our network are a pair of artificial spiking neurons that function as gradient detectors whose design is adapted from a computational model of the ASE neuron pair in C. elegans. Simulations show that our worm is able to detect the set-point with approximately four times higher probability than the optimal memoryless Levy foraging model. We also show that our spiking neural network is much more efficient and noise-resilient while navigating and tracking a contour, as compared to an equivalent non-spiking network. We demonstrate that our model is extremely robust to noise and with slight modifications can be used for other practical applications such as obstacle avoidance. Our network model could also be extended for use in three-dimensional contour tracking or obstacle avoidance

    Dynamics and Stability of Low-Reynolds-Number Swimming Near a Wall

    Get PDF
    The locomotion of microorganisms and tiny artificial swimmers is governed by low-Reynolds-number hydrodynamics, where viscous effects dominate and inertial effects are negligible. While the theory of low-Reynolds-number locomotion is well studied for unbounded fluid domains, the presence of a boundary has a significant influence on the swimmer’s trajectories and poses problems of dynamic stability of its motion. In this paper we consider a simple theoretical model of a microswimmer near a wall, study its dynamics, and analyze the stability of its motion. We highlight the underlying geometric structure of the dynamics, and establish a relation between the reversing symmetry of the system and existence and stability of periodic and steady solutions of motion near the wall. The results are demonstrated by numerical simulations and validated by motion experiments with macroscale robotic swimmer prototypes
    corecore