3,502 research outputs found

    Modeling and Design of Digital Electronic Systems

    Get PDF
    The paper is concerned with the modern methodologies for holistic modeling of electronic systems enabling system-on-chip design. The method deals with the functional modeling of complete electronic systems using the behavioral features of Hardware Description Languages or high level languages then targeting programmable devices - mainly Field Programmable Gate Arrays (FPGAs) - for the rapid prototyping of digital electronic controllers. This approach offers major advantages such as: a unique modeling and evaluation environment for complete power systems, the same environment is used for the rapid prototyping of the digital controller, fast design development, short time to market, a CAD platform independent model, reusability of the model/design, generation of valuable IP, high level hardware/software partitioning of the design is enabled, Concurrent Engineering basic rules (unique EDA environment and common design database) are fulfilled. The recent evolution of such design methodologies is marked through references to case studies of electronic system modeling,simulation, controller design and implementation. Pointers for future trends / evolution of electronic design strategies and tools are given

    FPGA design methodology for industrial control systems—a review

    Get PDF
    This paper reviews the state of the art of fieldprogrammable gate array (FPGA) design methodologies with a focus on industrial control system applications. This paper starts with an overview of FPGA technology development, followed by a presentation of design methodologies, development tools and relevant CAD environments, including the use of portable hardware description languages and system level programming/design tools. They enable a holistic functional approach with the major advantage of setting up a unique modeling and evaluation environment for complete industrial electronics systems. Three main design rules are then presented. These are algorithm refinement, modularity, and systematic search for the best compromise between the control performance and the architectural constraints. An overview of contributions and limits of FPGAs is also given, followed by a short survey of FPGA-based intelligent controllers for modern industrial systems. Finally, two complete and timely case studies are presented to illustrate the benefits of an FPGA implementation when using the proposed system modeling and design methodology. These consist of the direct torque control for induction motor drives and the control of a diesel-driven synchronous stand-alone generator with the help of fuzzy logic

    REAL TIME FUZZY CONTROLLER FOR QUADROTOR STABILITY CONTROL

    Get PDF
    In this report, we develop an intelligent adaptive neuro-fuzzy controller by using adaptive neuro fuzzy inference system (ANFIS) techniques. We begin by starting with a standard proportional-derivative (PD) controller and use the PD controller data to train the ANFIS system to develop a fuzzy controller. We then propose and validate a method to implement this control strategy on commercial off-the-shelf (COTS) hardware. An analysis is made into the choice of filters for attitude estimation. These choices are limited by the complexity of the filter and the computing ability and memory constraints of the micro-controller. Simplified Kalman filters are found to be good at estimation of attitude given the above constraints. Using model based design techniques, the models are implemented on an embedded system. This enables the deployment of fuzzy controllers on enthusiast-grade controllers. We evaluate the feasibility of the proposed control strategy in a model-in-the-loop simulation. We then propose a rapid prototyping strategy, allowing us to deploy these control algorithms on a system consisting of a combination of an ARM-based microcontroller and two Arduino-based controllers. We then use a combination of the code generation capabilities within MATLAB/Simulink in combination with multiple open-source projects in order to deploy code to an ARM CortexM4 based controller board. We also evaluate this strategy on an ARM-A8 based board, and a much less powerful Arduino based flight controller. We conclude by proving the feasibility of fuzzy controllers on Commercial-off the shelf (COTS) hardware, we also point out the limitations in the current hardware and make suggestions for hardware that we think would be better suited for memory heavy controllers

    Deep Space Network information system architecture study

    Get PDF
    The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control

    Open FPGA-based development platform for fuzzy systems with applications to communications

    Get PDF
    Soft computing techniques are gaining momentum as tools for network traffic modeling, analysis and control. Efficient hardware implementations of these techniques that can achieve real-time operation in high-speed communications equipment is however an open problem. This paper describes a platform for the development of fuzzy systems with applications to communications systems, namely network traffic analysis and control. An FPGA development board with PCI interface is employed to support an open platform that comprises open CAD tools as well as IP cores. For the development process, we set up a methodology and a CAD tools chain that cover from initial specification in a high-level language to implementation on FPGA devices. PCI compatible fuzzy inference modules are implemented as SoPC based on the open WISHBONE interconnection architecture. We outline results from the design and implementation of fuzzy analyzers and regulators for network traffic. These systems are shown to satisfy operational and architectural requirements of current and future high-performance routing equipment.Ministerio de Educación y Ciencia TEC2005-04359/MICJunta de Andalucía TIC2006-63

    Hardware/software codesign of configurable fuzzy control systems

    Get PDF
    Fuzzy inference techniques are an attractive and well-established approach for solving control problems. This is mainly due to their inherent ability to obtain robust, low-cost controllers from the intuitive (and usually ambiguous or incomplete) linguistic rules used by human operators when describing the control process. This paper focuses on the hardware/software codesign of configurable fuzzy control systems. Two prototype systems implemented on general-purpose development boards are presented. In both of them, hardware components are based on specific and configurable fuzzy inference architecture whereas software tasks are supported by a microcontroller. The first prototype uses an off-the-shelf microcontroller and a low-complexity Xilinx XC4005XL field programmable gate array (FPGA). The second one is implemented as a system on programmable chip (SoPC), integrating the microcontroller together with the fuzzy hardware architecture and its interface circuits into a Xilinx Spartan2E200 FPGA.Comisión Interministerial de Ciencia y Tecnología TIC2001-1726-C02-0

    FPGAs in Industrial Control Applications

    Get PDF
    The aim of this paper is to review the state-of-the-art of Field Programmable Gate Array (FPGA) technologies and their contribution to industrial control applications. Authors start by addressing various research fields which can exploit the advantages of FPGAs. The features of these devices are then presented, followed by their corresponding design tools. To illustrate the benefits of using FPGAs in the case of complex control applications, a sensorless motor controller has been treated. This controller is based on the Extended Kalman Filter. Its development has been made according to a dedicated design methodology, which is also discussed. The use of FPGAs to implement artificial intelligence-based industrial controllers is then briefly reviewed. The final section presents two short case studies of Neural Network control systems designs targeting FPGAs

    A design environment for synthesis of embedded fuzzy controllers on FPGAs

    Get PDF
    This paper presents a design environment for the synthesis of embedded fuzzy controllers on FPGAs. It provides a novel implementation technique that allows accelerating the exploration of the design space of fuzzy control modules, as well as a codesign flow that eases their integration into complex control systems and the joint development of hardware and software components. The set of CAD tools supporting this environment includes specific fuzzy logic design tools provided by Xfuzzy, FPGA synthesis and implementation tools from Xilinx, and modeling and simulation facilities from Matlab. As demonstrated by the analyzed design examples, the described development strategy takes advantage of flexibility and ease of configuration offered by the different tools to dramatically speed up the stages of description, synthesis, and functional verification of embedded fuzzy control system

    Using Building Blocks to Design Analog Neuro-Fuzzy Controllers

    Get PDF
    We present a parallel architecture for fuzzy controllers and a methodology for their realization as analog CMOS chips for low- and medium-precision applications. These chips can be made to learn through the adaptation of electrically controllable parameters guided by a dedicated hardware-compatible learning algorithm. Our designs emphasize simplicity at the circuit level—a prerequisite for increasing processor complexity and operation speed. Examples include a three-input, four-rule controller chip in 1.5-μm CMOS, single-poly, double-metal technology
    corecore