1,151 research outputs found

    Constraint-based technique for haptic volume exploration

    Get PDF
    Journal ArticleWe present a haptic rendering technique that uses directional constraints to facilitate enhanced exploration modes for volumetric datasets. The algorithm restricts user motion in certain directions by incrementally moving a proxy point along the axes of a local reference frame. Reaction forces are generated by a spring coupler between the proxy and the data probe, which can be tuned to the capabilities of the haptic interface. Secondary haptic effects including field forces, friction, and texture can be easily incorporated to convey information about additional characteristics of the data. We illustrate the technique with two examples: displaying fiber orientation in heart muscle layers and exploring diffusion tensor fiber tracts in brain white matter tissue. Initial evaluation of the approach indicates that haptic constraints provide an intuitive means for displaying directional information in volume data

    A Multi-Resolution Interactive Previewer for Volumetric Data on Arbitary Meshes

    Get PDF
    In this paper we describe a rendering method suitable for interactive previewing of large-scale arbitary-mesh volume data sets. A data set to be visualized is represented by a ''point cloud,'' i. e., a set of points and associated data values without known connectivity between the points. The method uses a multi-resolution approach to achieve interactive rendering rates of several frames per second for arbitrarily large data sets. Lower-resolution approximations of an original data set are created by iteratively applying a point- decimation operation to higher-resolution levels. The goal of this method is to provide the user with an interactive navigation and exploration tool to determine good viewpoints and transfer functions to pass on to a high-quality volume renderer that uses a standard algorithm

    Sensitivity Analysis and Optimization of Aerodynamic Configurations With Blend Surfaces

    Get PDF
    A novel (geometrical) parametrization procedure using solutions to a suitably chosen fourth order partial differential equation is used to define a class of airplane configurations. Inclusive in this definition are surface grids, volume grids, and grid sensitivity. The general airplane configuration has wing, fuselage, vertical tail and horizontal tail. The design variables are incorporated into the boundary conditions, and the solution is expressed as a Fourier series. The fuselage has circular cross section, and the radius is an algebraic function of four design parameters and an independent computational variable. Volume grids are obtained through an application of the Control Point Form method. A graphic interface software is developed which dynamically changes the surface of the airplane configuration with the change in input design variable. The software is made user friendly and is targeted towards the initial conceptual development of any aerodynamic configurations. Grid sensitivity with respect to surface design parameters and aerodynamic sensitivity coefficients based on potential flow is obtained using an Automatic Differentiation precompiler software tool ADIFOR. Aerodynamic shape optimization of the complete aircraft with twenty four design variables is performed. Unstructured and structured volume grids and Euler solutions are obtained with standard software to demonstrate the feasibility of the new surface definition

    Sensitivity Analysis and Optimization of Aerodynamic Configurations with Blend Surfaces

    Get PDF
    A novel (geometrical) parametrization procedure using solutions to a suitably chosen fourth order partial differential equation is used to define a class of airplane configurations. Inclusive in this definition are surface grids, volume grids, and grid sensitivity. The general airplane configuration has wing, fuselage, vertical tail and horizontal tail. The design variables are incorporated into the boundary conditions, and the solution is expressed as a Fourier series. The fuselage has circular cross section, and the radius is an algebraic function of four design parameters and an independent computational variable. Volume grids are obtained through an application of the Control Point Form method. A graphic interface software is developed which dynamically changes the surface of the airplane configuration with the change in input design variable. The software is made user friendly and is targeted towards the initial conceptual development of any aerodynamic configurations. Grid sensitivity with respect to surface design parameters and aerodynamic sensitivity coefficients based on potential flow is obtained using an Automatic Differentiation precompiler software tool ADIFOR. Aerodynamic shape optimization of the complete aircraft with twenty four design variables is performed. Unstructured and structured volume grids and Euler solutions are obtained with standard software to demonstrate the feasibility of the new surface definition

    Interactive visualization of computational fluid dynamics data.

    Get PDF
    This thesis describes a literature study and a practical research in the area of flow visualization, with special emphasis on the interactive visualization of Computational Fluid Dynamics (CFD) datasets. Given the four main categories of flow visualization methodology; direct, geometric, texture-based and feature-based flow visualization, the research focus of our thesis is on the direct, geometric and feature-based techniques. And the feature-based flow visualization is highlighted in this thesis. After we present an overview of the state-of-the-art of the recent developments in the flow visualization in higher spatial dimensions (2.5D, 3D and 4D), we propose a fast, simple, and interactive glyph placement algorithm for investigating and visualizing boundary flow data based on unstructured, adaptive resolution boundary meshes from CFD dataset. Afterward, we propose a novel, automatic mesh-driven vector field clustering algorithm which couples the properties of the vector field and resolution of underlying mesh into a unified distance measure for producing high-level, intuitive and suggestive visualization of large, unstructured, adaptive resolution boundary CFD meshes based vector fields. Next we present a novel application with multiple-coordinated views for interactive information-assisted visualization of multidimensional marine turbine CFD data. Information visualization techniques are combined with user interaction to exploit our cognitive ability for intuitive extraction of flow features from CFD datasets. Later, we discuss the design and implementation of each visualization technique used in our interactive flow visualization framework, such as glyphs, streamlines, parallel coordinate plots, etc. In this thesis, we focus on the interactive visualization of the real-world CFD datasets, and present a number of new methods or algorithms to address several related challenges in flow visualization. We strongly believe that the user interaction is a crucial part of an effective data analysis and visualization of large and complex datasets such as CFD datasets we use in this thesis. In order to demonstrate the use of the proposed techniques in this thesis, CFD domain experts reviews are also provided

    Abstracts to Be Presented at the 2015 Supercomputing Conference

    Get PDF
    Compilation of Abstracts to be presented at the 2015 Supercomputing Conferenc

    Volume MLS Ray Casting

    Full text link
    • …
    corecore