836 research outputs found

    A Unifying Framework for Adaptive Radar Detection in Homogeneous plus Structured Interference-Part II: Detectors Design

    Full text link
    This paper deals with the problem of adaptive multidimensional/multichannel signal detection in homogeneous Gaussian disturbance with unknown covariance matrix and structured (unknown) deterministic interference. The aforementioned problem extends the well-known Generalized Multivariate Analysis of Variance (GMANOVA) tackled in the open literature. In a companion paper, we have obtained the Maximal Invariant Statistic (MIS) for the problem under consideration, as an enabling tool for the design of suitable detectors which possess the Constant False-Alarm Rate (CFAR) property. Herein, we focus on the development of several theoretically-founded detectors for the problem under consideration. First, all the considered detectors are shown to be function of the MIS, thus proving their CFARness property. Secondly, coincidence or statistical equivalence among some of them in such a general signal model is proved. Thirdly, strong connections to well-known simpler scenarios found in adaptive detection literature are established. Finally, simulation results are provided for a comparison of the proposed receivers.Comment: Submitted for journal publicatio

    A novel approach to robust radar detection of range-spread targets

    Full text link
    This paper proposes a novel approach to robust radar detection of range-spread targets embedded in Gaussian noise with unknown covariance matrix. The idea is to model the useful target echo in each range cell as the sum of a coherent signal plus a random component that makes the signal-plus-noise hypothesis more plausible in presence of mismatches. Moreover, an unknown power of the random components, to be estimated from the observables, is inserted to optimize the performance when the mismatch is absent. The generalized likelihood ratio test (GLRT) for the problem at hand is considered. In addition, a new parametric detector that encompasses the GLRT as a special case is also introduced and assessed. The performance assessment shows the effectiveness of the idea also in comparison to natural competitors.Comment: 28 pages, 8 figure

    Model Order Selection Rules For Covariance Structure Classification

    Full text link
    The adaptive classification of the interference covariance matrix structure for radar signal processing applications is addressed in this paper. This represents a key issue because many detection architectures are synthesized assuming a specific covariance structure which may not necessarily coincide with the actual one due to the joint action of the system and environment uncertainties. The considered classification problem is cast in terms of a multiple hypotheses test with some nested alternatives and the theory of Model Order Selection (MOS) is exploited to devise suitable decision rules. Several MOS techniques, such as the Akaike, Takeuchi, and Bayesian information criteria are adopted and the corresponding merits and drawbacks are discussed. At the analysis stage, illustrating examples for the probability of correct model selection are presented showing the effectiveness of the proposed rules

    On Time-Reversal Imaging by Statistical Testing

    Full text link
    This letter is focused on the design and analysis of computational wideband time-reversal imaging algorithms, designed to be adaptive with respect to the noise levels pertaining to the frequencies being employed for scene probing. These algorithms are based on the concept of cell-by-cell processing and are obtained as theoretically-founded decision statistics for testing the hypothesis of single-scatterer presence (absence) at a specific location. These statistics are also validated in comparison with the maximal invariant statistic for the proposed problem.Comment: Reduced form accepted in IEEE Signal Processing Letter
    • …
    corecore