3,901 research outputs found

    Biodiesel from microalgae : the use of multi-criteria decision analysis for strain selection

    Get PDF
    Microalgae strain selection is a vital step in the production of biodiesel from microalgae. In this study, Multi-Criteria Decision Analysis (MCDA) methodologies are adopted to resolve this problem. The aim of this study is to identify the best microalgae strain for viable biodiesel production. The microalgae strains considered here are Heynigia sp., Scenedesmus sp., Niracticinium sp., Chlorella vulgaris, Chlorella sorokiniana and Auxenochlorella protothecoides. The five MCDA methods used to evaluate different strains of microalgae are Analytic Hierarchy Process (AHP), Weighted Sum Method (WSM), Weighted Product Method (WPM), Discrete Compromise Programming (DCP) and Technique for the Order of Preference to the Ideal Solution (TOPSIS). Pairwise comparison matrices are used to determine the weights of the evaluation criteria and it is observed that the most important evaluation criteria are lipid content and growth rate. From the results, Scenedesmus sp. is selected as the best microalgae strain among the six alternatives due to its high lipid content and relatively fast growth rate. The AHP is the most comprehensive of the five MCDA methods because it considers the importance of each criterion and inconsistencies in the rankings are verified. The implementation of the MCDA methods and the results from this study provide an idea of how MCDA can be applied in microalgae strain selection

    On the geometric mean method for incomplete pairwise comparisons

    Full text link
    When creating the ranking based on the pairwise comparisons very often, we face difficulties in completing all the results of direct comparisons. In this case, the solution is to use the ranking method based on the incomplete PC matrix. The article presents the extension of the well known geometric mean method for incomplete PC matrices. The description of the methods is accompanied by theoretical considerations showing the existence of the solution and the optimality of the proposed approach.Comment: 15 page

    A framework for the selection of the right nuclear power plant

    Get PDF
    Civil nuclear reactors are used for the production of electrical energy. In the nuclear industry vendors propose several nuclear reactor designs with a size from 35–45 MWe up to 1600–1700 MWe. The choice of the right design is a multidimensional problem since a utility has to include not only financial factors as levelised cost of electricity (LCOE) and internal rate of return (IRR), but also the so called “external factors” like the required spinning reserve, the impact on local industry and the social acceptability. Therefore it is necessary to balance advantages and disadvantages of each design during the entire life cycle of the plant, usually 40–60 years. In the scientific literature there are several techniques for solving this multidimensional problem. Unfortunately it does not seem possible to apply these methodologies as they are, since the problem is too complex and it is difficult to provide consistent and trustworthy expert judgments. This paper fills the gap, proposing a two-step framework to choosing the best nuclear reactor at the pre-feasibility study phase. The paper shows in detail how to use the methodology, comparing the choice of a small-medium reactor (SMR) with a large reactor (LR), characterised, according to the International Atomic Energy Agency (2006), by an electrical output respectively lower and higher than 700 MWe

    Stochastic Judgments in the AHP: The Measurement of Rank Reversal Probabilities

    Get PDF
    Recently, the issue of rank reversal of alternatives in the Analytic Hierarchy Process (AHP) has captured the attention of a number of researchers. Most of the research on rank reversal has addressed the case where the pairwise comparisons of the alternatives are represented by single values, focusing on mathematical properties inherent to the AHP methodology that can lead to rank reversal if a new alternative is added or an existing one is deleted. A second situation, completely unrelated to the mathematical foundations of the AHP, in which rank reversal can occur is the case where the pairwise judgments are stochastic, rather than single values. If the relative preference ratings are uncertain, one has judgment intervals, and as a consequence there is a possibility that the rankings resulting from an AHP analysis are reversed, i.e., incorrect. It is important for modeler and decision maker alike to be aware of the likelihood that this situation of rank reversal will occur. In this paper, we introduce methods for assessing the relative preference of the alternatives in terms of their rankings, if the pairwise comparisons of the alternatives are stochastic. We develop multivariate statistical techniques to obtain point estimates and confidence intervals of the rank reversal probabilities, and show how simulation experiments can be used as an effective and accurate tool for analyzing the stability of the preference rankings under uncertainty. This information about the extent to which the ranking of the alternatives is sensitive to the stochastic nature of the pairwise judgments should be valuable information into the decision making process, much like variability and confidence intervals are crucial tools for statistical inference. Although the focus of our analysis is on stochastic preference judgments, our sampling method for estimating rank reversal probabilities can be extended to the case of non-stochastic imprecise fuzzy judgments. We provide simulation experiments and numerical examples comparing our method with that proposed previously by Saaty and Vargas (1987) for imprecise interval judgments
    • …
    corecore