101,825 research outputs found

    Particular object retrieval with integral max-pooling of CNN activations

    Get PDF
    Recently, image representation built upon Convolutional Neural Network (CNN) has been shown to provide effective descriptors for image search, outperforming pre-CNN features as short-vector representations. Yet such models are not compatible with geometry-aware re-ranking methods and still outperformed, on some particular object retrieval benchmarks, by traditional image search systems relying on precise descriptor matching, geometric re-ranking, or query expansion. This work revisits both retrieval stages, namely initial search and re-ranking, by employing the same primitive information derived from the CNN. We build compact feature vectors that encode several image regions without the need to feed multiple inputs to the network. Furthermore, we extend integral images to handle max-pooling on convolutional layer activations, allowing us to efficiently localize matching objects. The resulting bounding box is finally used for image re-ranking. As a result, this paper significantly improves existing CNN-based recognition pipeline: We report for the first time results competing with traditional methods on the challenging Oxford5k and Paris6k datasets

    DCU-TCD@LogCLEF 2010: re-ranking document collections and query performance estimation

    Get PDF
    This paper describes the collaborative participation of Dublin City University and Trinity College Dublin in LogCLEF 2010. Two sets of experiments were conducted. First, different aspects of the TEL query logs were analysed after extracting user sessions of consecutive queries on a topic. The relation between the queries and their length (number of terms) and position (first query or further reformulations) was examined in a session with respect to query performance estimators such as query scope, IDF-based measures, simplified query clarity score, and average inverse document collection frequency. Results of this analysis suggest that only some estimator values show a correlation with query length or position in the TEL logs (e.g. similarity score between collection and query). Second, the relation between three attributes was investigated: the user's country (detected from IP address), the query language, and the interface language. The investigation aimed to explore the influence of the three attributes on the user's collection selection. Moreover, the investigation involved assigning different weights to the three attributes in a scoring function that was used to re-rank the collections displayed to the user according to the language and country. The results of the collection re-ranking show a significant improvement in Mean Average Precision (MAP) over the original collection ranking of TEL. The results also indicate that the query language and interface language have more in uence than the user's country on the collections selected by the users

    A Deep Architecture for Semantic Matching with Multiple Positional Sentence Representations

    Full text link
    Matching natural language sentences is central for many applications such as information retrieval and question answering. Existing deep models rely on a single sentence representation or multiple granularity representations for matching. However, such methods cannot well capture the contextualized local information in the matching process. To tackle this problem, we present a new deep architecture to match two sentences with multiple positional sentence representations. Specifically, each positional sentence representation is a sentence representation at this position, generated by a bidirectional long short term memory (Bi-LSTM). The matching score is finally produced by aggregating interactions between these different positional sentence representations, through kk-Max pooling and a multi-layer perceptron. Our model has several advantages: (1) By using Bi-LSTM, rich context of the whole sentence is leveraged to capture the contextualized local information in each positional sentence representation; (2) By matching with multiple positional sentence representations, it is flexible to aggregate different important contextualized local information in a sentence to support the matching; (3) Experiments on different tasks such as question answering and sentence completion demonstrate the superiority of our model.Comment: Accepted by AAAI-201

    Learning to Rank Question Answer Pairs with Holographic Dual LSTM Architecture

    Full text link
    We describe a new deep learning architecture for learning to rank question answer pairs. Our approach extends the long short-term memory (LSTM) network with holographic composition to model the relationship between question and answer representations. As opposed to the neural tensor layer that has been adopted recently, the holographic composition provides the benefits of scalable and rich representational learning approach without incurring huge parameter costs. Overall, we present Holographic Dual LSTM (HD-LSTM), a unified architecture for both deep sentence modeling and semantic matching. Essentially, our model is trained end-to-end whereby the parameters of the LSTM are optimized in a way that best explains the correlation between question and answer representations. In addition, our proposed deep learning architecture requires no extensive feature engineering. Via extensive experiments, we show that HD-LSTM outperforms many other neural architectures on two popular benchmark QA datasets. Empirical studies confirm the effectiveness of holographic composition over the neural tensor layer.Comment: SIGIR 2017 Full Pape
    • 

    corecore