2,971 research outputs found

    Temporal Model Adaptation for Person Re-Identification

    Full text link
    Person re-identification is an open and challenging problem in computer vision. Majority of the efforts have been spent either to design the best feature representation or to learn the optimal matching metric. Most approaches have neglected the problem of adapting the selected features or the learned model over time. To address such a problem, we propose a temporal model adaptation scheme with human in the loop. We first introduce a similarity-dissimilarity learning method which can be trained in an incremental fashion by means of a stochastic alternating directions methods of multipliers optimization procedure. Then, to achieve temporal adaptation with limited human effort, we exploit a graph-based approach to present the user only the most informative probe-gallery matches that should be used to update the model. Results on three datasets have shown that our approach performs on par or even better than state-of-the-art approaches while reducing the manual pairwise labeling effort by about 80%

    Mutimodal Ranking Optimization for Heterogeneous Face Re-identification

    Full text link
    Heterogeneous face re-identification, namely matching heterogeneous faces across disjoint visible light (VIS) and near-infrared (NIR) cameras, has become an important problem in video surveillance application. However, the large domain discrepancy between heterogeneous NIR-VIS faces makes the performance of face re-identification degraded dramatically. To solve this problem, a multimodal fusion ranking optimization algorithm for heterogeneous face re-identification is proposed in this paper. Firstly, we design a heterogeneous face translation network to obtain multimodal face pairs, including NIR-VIS/NIR-NIR/VIS-VIS face pairs, through mutual transformation between NIR-VIS faces. Secondly, we propose linear and non-linear fusion strategies to aggregate initial ranking lists of multimodal face pairs and acquire the optimized re-ranked list based on modal complementarity. The experimental results show that the proposed multimodal fusion ranking optimization algorithm can effectively utilize the complementarity and outperforms some relative methods on the SCface dataset

    A Pose-Sensitive Embedding for Person Re-Identification with Expanded Cross Neighborhood Re-Ranking

    Full text link
    Person re identification is a challenging retrieval task that requires matching a person's acquired image across non overlapping camera views. In this paper we propose an effective approach that incorporates both the fine and coarse pose information of the person to learn a discriminative embedding. In contrast to the recent direction of explicitly modeling body parts or correcting for misalignment based on these, we show that a rather straightforward inclusion of acquired camera view and/or the detected joint locations into a convolutional neural network helps to learn a very effective representation. To increase retrieval performance, re-ranking techniques based on computed distances have recently gained much attention. We propose a new unsupervised and automatic re-ranking framework that achieves state-of-the-art re-ranking performance. We show that in contrast to the current state-of-the-art re-ranking methods our approach does not require to compute new rank lists for each image pair (e.g., based on reciprocal neighbors) and performs well by using simple direct rank list based comparison or even by just using the already computed euclidean distances between the images. We show that both our learned representation and our re-ranking method achieve state-of-the-art performance on a number of challenging surveillance image and video datasets. The code is available online at: https://github.com/pse-ecn/pose-sensitive-embeddingComment: CVPR 2018: v2 (fixes, added new results on PRW dataset

    Deep Constrained Dominant Sets for Person Re-Identification

    Get PDF
    In this work, we propose an end-to-end constrained clustering scheme to tackle the person re-identification (re-id) problem. Deep neural networks (DNN) have recently proven to be effective on person re-identification task. In particular, rather than leveraging solely a probe-gallery similarity, diffusing the similarities among the gallery images in an end-to-end manner has proven to be effective in yielding a robust probe-gallery affinity. However, existing methods do not apply probe image as a constraint, and are prone to noise propagation during the similarity diffusion process. To overcome this, we propose an intriguing scheme which treats person-image retrieval problem as a constrained clustering optimization problem, called deep constrained dominant sets (DCDS). Given a probe and gallery images, we re-formulate person re-id problem as finding a constrained cluster, where the probe image is taken as a constraint (seed) and each cluster corresponds to a set of images corresponding to the same person. By optimizing the constrained clustering in an end-to-end manner, we naturally leverage the contextual knowledge of a set of images corresponding to the given person-images. We further enhance the performance by integrating an auxiliary net alongside DCDS, which employs a multi-scale ResNet. To validate the effectiveness of our method we present experiments on several benchmark datasets and show that the proposed method can outperform state-of-the-art methods
    • …
    corecore