2,524 research outputs found

    Crosslingual Document Embedding as Reduced-Rank Ridge Regression

    Get PDF
    There has recently been much interest in extending vector-based word representations to multiple languages, such that words can be compared across languages. In this paper, we shift the focus from words to documents and introduce a method for embedding documents written in any language into a single, language-independent vector space. For training, our approach leverages a multilingual corpus where the same concept is covered in multiple languages (but not necessarily via exact translations), such as Wikipedia. Our method, Cr5 (Crosslingual reduced-rank ridge regression), starts by training a ridge-regression-based classifier that uses language-specific bag-of-word features in order to predict the concept that a given document is about. We show that, when constraining the learned weight matrix to be of low rank, it can be factored to obtain the desired mappings from language-specific bags-of-words to language-independent embeddings. As opposed to most prior methods, which use pretrained monolingual word vectors, postprocess them to make them crosslingual, and finally average word vectors to obtain document vectors, Cr5 is trained end-to-end and is thus natively crosslingual as well as document-level. Moreover, since our algorithm uses the singular value decomposition as its core operation, it is highly scalable. Experiments show that our method achieves state-of-the-art performance on a crosslingual document retrieval task. Finally, although not trained for embedding sentences and words, it also achieves competitive performance on crosslingual sentence and word retrieval tasks.Comment: In The Twelfth ACM International Conference on Web Search and Data Mining (WSDM '19

    IRGAN: A Minimax Game for Unifying Generative and Discriminative Information Retrieval Models

    Get PDF
    This paper provides a unified account of two schools of thinking in information retrieval modelling: the generative retrieval focusing on predicting relevant documents given a query, and the discriminative retrieval focusing on predicting relevancy given a query-document pair. We propose a game theoretical minimax game to iteratively optimise both models. On one hand, the discriminative model, aiming to mine signals from labelled and unlabelled data, provides guidance to train the generative model towards fitting the underlying relevance distribution over documents given the query. On the other hand, the generative model, acting as an attacker to the current discriminative model, generates difficult examples for the discriminative model in an adversarial way by minimising its discrimination objective. With the competition between these two models, we show that the unified framework takes advantage of both schools of thinking: (i) the generative model learns to fit the relevance distribution over documents via the signals from the discriminative model, and (ii) the discriminative model is able to exploit the unlabelled data selected by the generative model to achieve a better estimation for document ranking. Our experimental results have demonstrated significant performance gains as much as 23.96% on Precision@5 and 15.50% on MAP over strong baselines in a variety of applications including web search, item recommendation, and question answering.Comment: 12 pages; appendix adde
    • …
    corecore