358 research outputs found

    Multicriteria ranking using weights which minimize the score range

    Get PDF
    Various schemes have been proposed for generating a set of non-subjective weights when aggregating multiple criteria for the purposes of ranking or selecting alternatives. The maximin approach chooses the weights which maximise the lowest score (assuming there is an upper bound to scores). This is equivalent to finding the weights which minimize the maximum deviation, or range, between the worst and best scores (minimax). At first glance this seems to be an equitable way of apportioning weight, and the Rawlsian theory of justice has been cited in its support.We draw a distinction between using the maximin rule for the purpose of assessing performance, and using it for allocating resources amongst the alternatives. We demonstrate that it has a number of drawbacks which make it inappropriate for the assessment of performance. Specifically, it is tantamount to allowing the worst performers to decide the worth of the criteria so as to maximise their overall score. Furthermore, when making a selection from a list of alternatives, the final choice is highly sensitive to the removal or inclusion of alternatives whose performance is so poor that they are clearly irrelevant to the choice at hand

    Rating and ranking firms with fuzzy expert systems: the case of Camuzzi

    Get PDF
    In this paper we present a real-life application of a fuzzy expert system aimed at rating and ranking firms. Unlike standard DCF models, it integrates financial, strategic and business determinants and processes both quantitative and qualitative variables. Twenty-one value drivers are defined, concerning the target firm (strategic assets in place and expected financial performance), the acquisition (synergies, quality of management) and the sector (intensity of competition, entry barriers). Their combination via “if-then” rules leads to the definition of an output represented by a real number in the interval [0,1]. Such a number expresses the value-generating power of the target firm inclusive of synergies with the bidder (Strategic Enterprise Value). The system may be used for rating and ranking firms operating in the same sector. A regression analysis using hostile takeovers multiples may be employed to translate the score into price. The real-life case refers to Camuzzi (a natural gas distributor), acquired by Enel, the Italian ex monopolist of electric energy.Corporate finance, firm, rating, ranking, expert system, fuzzy, evaluation

    Rating and ranking firms with fuzzy expert systems: the case of Camuzzi

    Get PDF
    In this paper we present a real-life application of a fuzzy expert system aimed at rating and ranking firms. Unlike standard DCF models, it integrates financial, strategic and business determinants and processes both quantitative and qualitative variables. Twenty-one value drivers are defined, concerning the target firm (strategic assets in place and expected financial performance), the acquisition (synergies, quality of management) and the sector (intensity of competition, entry barriers). Their combination via “if-then” rules leads to the definition of an output represented by a real number in the interval [0,1]. Such a number expresses the valuegenerating power of the target firm inclusive of synergies with the bidder (Strategic Enterprise Value). The system may be used for rating and ranking firms operating in the same sector. A regression analysis using hostile takeovers multiples may be employed to translate the score into price. The real-life case refers to Camuzzi (a natural gas distributor), acquired by Enel, the Italian ex monopolist of electric energy.Corporate finance, firm, rating, ranking, expert system, fuzzy logic, evaluation

    Capturing Risk in Capital Budgeting

    Get PDF
    NPS NRP Technical ReportThis proposed research has the goal of proposing novel, reusable, extensible, adaptable, and comprehensive advanced analytical process and Integrated Risk Management to help the (DOD) with risk-based capital budgeting, Monte Carlo risk-simulation, predictive analytics, and stochastic optimization of acquisitions and programs portfolios with multiple competing stakeholders while subject to budgetary, risk, schedule, and strategic constraints. The research covers topics of traditional capital budgeting methodologies used in industry, including the market, cost, and income approaches, and explains how some of these traditional methods can be applied in the DOD by using DOD-centric non-economic, logistic, readiness, capabilities, and requirements variables. Stochastic portfolio optimization with dynamic simulations and investment efficient frontiers will be run for the purposes of selecting the best combination of programs and capabilities is also addressed, as are other alternative methods such as average ranking, risk metrics, lexicographic methods, PROMETHEE, ELECTRE, and others. The results include actionable intelligence developed from an analytically robust case study that senior leadership at the DOD may utilize to make optimal decisions. The main deliverables will be a detailed written research report and presentation brief on the approach of capturing risk and uncertainty in capital budgeting analysis. The report will detail the proposed methodology and applications, as well as a summary case study and examples of how the methodology can be applied.N8 - Integration of Capabilities & ResourcesThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.

    Methodological review of multicriteria optimization techniques: aplications in water resources

    Get PDF
    Multi-criteria decision analysis (MCDA) is an umbrella approach that has been applied to a wide range of natural resource management situations. This report has two purposes. First, it aims to provide an overview of advancedmulticriteriaapproaches, methods and tools. The review seeks to layout the nature of the models, their inherent strengths and limitations. Analysis of their applicability in supporting real-life decision-making processes is provided with relation to requirements imposed by organizationally decentralized and economically specific spatial and temporal frameworks. Models are categorized based on different classification schemes and are reviewed by describing their general characteristics, approaches, and fundamental properties. A necessity of careful structuring of decision problems is discussed regarding planning, staging and control aspects within broader agricultural context, and in water management in particular. A special emphasis is given to the importance of manipulating decision elements by means ofhierarchingand clustering. The review goes beyond traditionalMCDAtechniques; it describes new modelling approaches. The second purpose is to describe newMCDAparadigms aimed at addressing the inherent complexity of managing water ecosystems, particularly with respect to multiple criteria integrated with biophysical models,multistakeholders, and lack of information. Comments about, and critical analysis of, the limitations of traditional models are made to point out the need for, and propose a call to, a new way of thinking aboutMCDAas they are applied to water and natural resources management planning. These new perspectives do not undermine the value of traditional methods; rather they point to a shift in emphasis from methods for problem solving to methods for problem structuring. Literature review show successfully integrations of watershed management optimization models to efficiently screen a broad range of technical, economic, and policy management options within a watershed system framework and select the optimal combination of management strategies and associated water allocations for designing a sustainable watershed management plan at least cost. Papers show applications in watershed management model that integrates both natural and human elements of a watershed system including the management of ground and surface water sources, water treatment and distribution systems, human demands,wastewatertreatment and collection systems, water reuse facilities,nonpotablewater distribution infrastructure, aquifer storage and recharge facilities, storm water, and land use

    Assessment and Linear Programming under Fuzzy Conditions

    Get PDF
    A new fuzzy method is developed using triangular/trapezoidal fuzzy numbers for evaluating a group's mean performance, when qualitative grades instead of numerical scores are used for assessing its members' individual performance. Also, a new technique is developed for solving Linear Programming problems with fuzzy coefficients and everyday life applications are presented to illustrate our results.Comment: 19 pages, 3 figure

    Multi-criteria analysis: a manual

    Get PDF

    A fuzzy AHP multi-criteria decision-making approach applied to combined cooling, heating and power production systems

    Get PDF
    Most of the real-world multi-criteria decision-making (MCDM) problems contain a mixture of quantitative and qualitative criteria; therefore quantitative MCDM methods are inadequate for handling this type of decision problems. In this paper, a MCDM method based on the Fuzzy Sets Theory and on the Analytic Hierarchy Process (AHP) is proposed. This method incorporates a number of perspectives on how to approach the fuzzy MCDM problem, as follows: (1) combining quantitative and qualitative criteria (2) expressing criteria pair-wise comparison in linguistic terms and performance of the alternative on each criterion in linguistic terms or exact values when criterion is qualitative or quantitative, respectively, (3) converting all the assessments into trapezoidal fuzzy numbers, (4) using the difference minimization method to calculate the local weight of criteria, employing the algebraic operations of fuzzy numbers based on the concept of α-cuts, (4) calculating the global weight of criteria and the global performance of each alternative using geometric mean and the weighted sum, respectively, (5) using the centroid method to rank the alternatives. Finally, an illustrative example on evaluation of several combined cooling, heat and power production systems is used to demonstrate the effectiveness of the proposed methodology

    Decision Support Systems

    Get PDF
    The current decision-making problems is more complex than it was in the past, prompting the need for decision support. Most real-world decision-making situations are subject to bounded rationality; whereby the technical and economic evaluation of all solution alternatives (branches) is bounded by the consideration of dominant subjective constraints. The early definition of DSS introduced it as a system that intended to support decision makers in semi-structured problems that could not be completely supported by algorithms. DSSs were planned to be an accessory for managers to expand their capabilities but not to replace them. Decision support systems could provide the means to complement decision makers by quantitatively supporting managerial decisions that could otherwise be based on personal intuition and experience. In addition to the traditional DSS characteristics (i.e., data and model orientation, interactivity), the inclusion of an intelligent knowledge base would be required to quantify the impacts of both technical (hard) and subjective (soft) constraints
    corecore