7,708 research outputs found

    Adaptive Ranking Based Constraint Handling for Explicitly Constrained Black-Box Optimization

    Full text link
    A novel explicit constraint handling technique for the covariance matrix adaptation evolution strategy (CMA-ES) is proposed. The proposed constraint handling exhibits two invariance properties. One is the invariance to arbitrary element-wise increasing transformation of the objective and constraint functions. The other is the invariance to arbitrary affine transformation of the search space. The proposed technique virtually transforms a constrained optimization problem into an unconstrained optimization problem by considering an adaptive weighted sum of the ranking of the objective function values and the ranking of the constraint violations that are measured by the Mahalanobis distance between each candidate solution to its projection onto the boundary of the constraints. Simulation results are presented and show that the CMA-ES with the proposed constraint handling exhibits the affine invariance and performs similarly to the CMA-ES on unconstrained counterparts.Comment: 9 page

    Solving the G-problems in less than 500 iterations: Improved efficient constrained optimization by surrogate modeling and adaptive parameter control

    Get PDF
    Constrained optimization of high-dimensional numerical problems plays an important role in many scientific and industrial applications. Function evaluations in many industrial applications are severely limited and no analytical information about objective function and constraint functions is available. For such expensive black-box optimization tasks, the constraint optimization algorithm COBRA was proposed, making use of RBF surrogate modeling for both the objective and the constraint functions. COBRA has shown remarkable success in solving reliably complex benchmark problems in less than 500 function evaluations. Unfortunately, COBRA requires careful adjustment of parameters in order to do so. In this work we present a new self-adjusting algorithm SACOBRA, which is based on COBRA and capable to achieve high-quality results with very few function evaluations and no parameter tuning. It is shown with the help of performance profiles on a set of benchmark problems (G-problems, MOPTA08) that SACOBRA consistently outperforms any COBRA algorithm with fixed parameter setting. We analyze the importance of the several new elements in SACOBRA and find that each element of SACOBRA plays a role to boost up the overall optimization performance. We discuss the reasons behind and get in this way a better understanding of high-quality RBF surrogate modeling

    Comparison of constraint-handling techniques for metaheuristic optimization

    Get PDF
    Many design problems in engineering have highly nonlinear constraints and the proper handling of such constraints can be important to ensure solution quality. There are many different ways of handling constraints and different algorithms for optimization problems, which makes it difficult to choose for users. This paper compares six different constraint-handling techniques such as penalty methods, barrier functions, epsilon-constrained method, feasibility criteria and stochastic ranking. The pressure vessel design problem is solved by the flower pollination algorithm, and results show that stochastic ranking and epsilon-constrained method are most effective for this type of design optimization

    Extensions of firefly algorithm for nonsmooth nonconvex constrained optimization problems

    Get PDF
    Publicado em: "Computational science and its applications – ICCSA 2016: 16th International Conference, Beijing, China, July 4-7, 2016, Proceedings, Part I". ISBN 978-3-319-42084-4Firefly Algorithm (FA) is a stochastic population-based algorithm based on the flashing patterns and behavior of fireflies. Original FA was created and successfully applied to solve bound constrained optimization problems. In this paper we present extensions of FA for solving nonsmooth nonconvex constrained global optimization problems. To handle the constraints of the problem, feasibility and dominance rules and a fitness function based on the global competitive ranking, are proposed. To enhance the speed of convergence, the proposed extensions of FA invoke a stochastic local search procedure. Numerical experiments to validate the proposed approaches using a set of well know test problems are presented. The results show that the proposed extensions of FA compares favorably with other stochastic population-based methods.COMPETE: POCI-01-0145- FEDER-007043FCT – Fundação para a Ciência e Tecnologia within the projects UID/CEC/00319/2013 and UID/MAT/00013/201

    Comparison of Direct Multiobjective Optimization Methods for the Design of Electric Vehicles

    Get PDF
    "System design oriented methodologies" are discussed in this paper through the comparison of multiobjective optimization methods applied to heterogeneous devices in electrical engineering. Avoiding criteria function derivatives, direct optimization algorithms are used. In particular, deterministic geometric methods such as the Hooke & Jeeves heuristic approach are compared with stochastic evolutionary algorithms (Pareto genetic algorithms). Different issues relative to convergence rapidity and robustness on mixed (continuous/discrete), constrained and multiobjective problems are discussed. A typical electrical engineering heterogeneous and multidisciplinary system is considered as a case study: the motor drive of an electric vehicle. Some results emphasize the capacity of each approach to facilitate system analysis and particularly to display couplings between optimization parameters, constraints, objectives and the driving mission

    Self-adaptive fitness formulation for constrained optimization

    Get PDF
    A self-adaptive fitness formulation is presented for solving constrained optimization problems. In this method, the dimensionality of the problem is reduced by representing the constraint violations by a single infeasibility measure. The infeasibility measure is used to form a two-stage penalty that is applied to the infeasible solutions. The performance of the method has been examined by its application to a set of eleven test cases from the specialized literature. The results have been compared with previously published results from the literature. It is shown that the method is able to find the optimum solutions. The proposed method requires no parameter tuning and can be used as a fitness evaluator with any evolutionary algorithm. The approach is also robust in its handling of both linear and nonlinear equality and inequality constraint functions. Furthermore, the method does not require an initial feasible solution

    Global competitive ranking for constraints handling with modified differential evolution

    Get PDF
    Constrained nonlinear programming problems involving a nonlinear objective function with inequality and/or equality constraints introduce the possibility of multiple local optima. The task of global optimization is to find a solution where the objective function obtains its most extreme value while satisfying the constraints. Depending on the nature of the involved functions many solution methods have been proposed. Most of the existing population-based stochastic methods try to make the solution feasible by using a penalty function method. However, to find the appropriate penalty parameter is not an easy task. Population-based differential evolution is shown to be very efficient to solve global optimization problems with simple bounds. To handle the constraints effectively, in this paper, we propose a modified constrained differential evolution that uses self-adaptive control parameters, a mixed modified mutation, the inversion operation, a modified selection and the elitism in order to progress efficiently towards a global solution. In the modified selection, we propose a fitness function based on the global competitive ranking technique for handling the constraints. We test 13 benchmark problems. We also compare the results with the results found in literature. It is shown that our method is rather effective when solving constrained problemsFundação para a Ciência e a Tecnologia (FCT
    • …
    corecore