12,254 research outputs found

    Speeding up Permutation Testing in Neuroimaging

    Full text link
    Multiple hypothesis testing is a significant problem in nearly all neuroimaging studies. In order to correct for this phenomena, we require a reliable estimate of the Family-Wise Error Rate (FWER). The well known Bonferroni correction method, while simple to implement, is quite conservative, and can substantially under-power a study because it ignores dependencies between test statistics. Permutation testing, on the other hand, is an exact, non-parametric method of estimating the FWER for a given α\alpha-threshold, but for acceptably low thresholds the computational burden can be prohibitive. In this paper, we show that permutation testing in fact amounts to populating the columns of a very large matrix P{\bf P}. By analyzing the spectrum of this matrix, under certain conditions, we see that P{\bf P} has a low-rank plus a low-variance residual decomposition which makes it suitable for highly sub--sampled --- on the order of 0.5%0.5\% --- matrix completion methods. Based on this observation, we propose a novel permutation testing methodology which offers a large speedup, without sacrificing the fidelity of the estimated FWER. Our evaluations on four different neuroimaging datasets show that a computational speedup factor of roughly 50×50\times can be achieved while recovering the FWER distribution up to very high accuracy. Further, we show that the estimated α\alpha-threshold is also recovered faithfully, and is stable.Comment: NIPS 1

    Accelerating Permutation Testing in Voxel-wise Analysis through Subspace Tracking: A new plugin for SnPM

    Get PDF
    Permutation testing is a non-parametric method for obtaining the max null distribution used to compute corrected pp-values that provide strong control of false positives. In neuroimaging, however, the computational burden of running such an algorithm can be significant. We find that by viewing the permutation testing procedure as the construction of a very large permutation testing matrix, TT, one can exploit structural properties derived from the data and the test statistics to reduce the runtime under certain conditions. In particular, we see that TT is low-rank plus a low-variance residual. This makes TT a good candidate for low-rank matrix completion, where only a very small number of entries of TT (∼0.35%\sim0.35\% of all entries in our experiments) have to be computed to obtain a good estimate. Based on this observation, we present RapidPT, an algorithm that efficiently recovers the max null distribution commonly obtained through regular permutation testing in voxel-wise analysis. We present an extensive validation on a synthetic dataset and four varying sized datasets against two baselines: Statistical NonParametric Mapping (SnPM13) and a standard permutation testing implementation (referred as NaivePT). We find that RapidPT achieves its best runtime performance on medium sized datasets (50≤n≤20050 \leq n \leq 200), with speedups of 1.5x - 38x (vs. SnPM13) and 20x-1000x (vs. NaivePT). For larger datasets (n≥200n \geq 200) RapidPT outperforms NaivePT (6x - 200x) on all datasets, and provides large speedups over SnPM13 when more than 10000 permutations (2x - 15x) are needed. The implementation is a standalone toolbox and also integrated within SnPM13, able to leverage multi-core architectures when available.Comment: 36 pages, 16 figure

    Faster Family-wise Error Control for Neuroimaging with a Parametric Bootstrap

    Full text link
    In neuroimaging, hundreds to hundreds of thousands of tests are performed across a set of brain regions or all locations in an image. Recent studies have shown that the most common family-wise error (FWE) controlling procedures in imaging, which rely on classical mathematical inequalities or Gaussian random field theory, yield FWE rates that are far from the nominal level. Depending on the approach used, the FWER can be exceedingly small or grossly inflated. Given the widespread use of neuroimaging as a tool for understanding neurological and psychiatric disorders, it is imperative that reliable multiple testing procedures are available. To our knowledge, only permutation joint testing procedures have been shown to reliably control the FWER at the nominal level. However, these procedures are computationally intensive due to the increasingly available large sample sizes and dimensionality of the images, and analyses can take days to complete. Here, we develop a parametric bootstrap joint testing procedure. The parametric bootstrap procedure works directly with the test statistics, which leads to much faster estimation of adjusted \emph{p}-values than resampling-based procedures while reliably controlling the FWER in sample sizes available in many neuroimaging studies. We demonstrate that the procedure controls the FWER in finite samples using simulations, and present region- and voxel-wise analyses to test for sex differences in developmental trajectories of cerebral blood flow

    Censoring Distances Based on Labeled Cortical Distance Maps in Cortical Morphometry

    Get PDF
    Shape differences are manifested in cortical structures due to neuropsychiatric disorders. Such differences can be measured by labeled cortical distance mapping (LCDM) which characterizes the morphometry of the laminar cortical mantle of cortical structures. LCDM data consist of signed distances of gray matter (GM) voxels with respect to GM/white matter (WM) surface. Volumes and descriptive measures (such as means and variances) for each subject and the pooled distances provide the morphometric differences between diagnostic groups, but they do not reveal all the morphometric information contained in LCDM distances. To extract more information from LCDM data, censoring of the distances is introduced. For censoring of LCDM distances, the range of LCDM distances is partitioned at a fixed increment size; and at each censoring step, and distances not exceeding the censoring distance are kept. Censored LCDM distances inherit the advantages of the pooled distances. Furthermore, the analysis of censored distances provides information about the location of morphometric differences which cannot be obtained from the pooled distances. However, at each step, the censored distances aggregate, which might confound the results. The influence of data aggregation is investigated with an extensive Monte Carlo simulation analysis and it is demonstrated that this influence is negligible. As an illustrative example, GM of ventral medial prefrontal cortices (VMPFCs) of subjects with major depressive disorder (MDD), subjects at high risk (HR) of MDD, and healthy control (Ctrl) subjects are used. A significant reduction in laminar thickness of the VMPFC and perhaps shrinkage in MDD and HR subjects is observed when compared to Ctrl subjects. The methodology is also applicable to LCDM-based morphometric measures of other cortical structures affected by disease.Comment: 25 pages, 10 figure
    • …
    corecore