8,183 research outputs found

    Fundamental Properties of Sum-Rank Metric Codes

    Full text link
    This paper investigates the theory of sum-rank metric codes for which the individual matrix blocks may have different sizes. Various bounds on the cardinality of a code are derived, along with their asymptotic extensions. The duality theory of sum-rank metric codes is also explored, showing that MSRD codes (the sum-rank analogue of MDS codes) dualize to MSRD codes only if all matrix blocks have the same number of columns. In the latter case, duality considerations lead to an upper bound on the number of blocks for MSRD codes. The paper also contains various constructions of sum-rank metric codes for variable block sizes, illustrating the possible behaviours of these objects with respect to bounds, existence, and duality properties

    Generalized weights: an anticode approach

    Full text link
    In this paper we study generalized weights as an algebraic invariant of a code. We first describe anticodes in the Hamming and in the rank metric, proving in particular that optimal anticodes in the rank metric coincide with Frobenius-closed spaces. Then we characterize both generalized Hamming and rank weights of a code in terms of the intersection of the code with optimal anticodes in the respective metrics. Inspired by this description, we propose a new algebraic invariant, which we call "Delsarte generalized weights", for Delsarte rank-metric codes based on optimal anticodes of matrices. We show that our invariant refines the generalized rank weights for Gabidulin codes proposed by Kurihara, Matsumoto and Uyematsu, and establish a series of properties of Delsarte generalized weights. In particular, we characterize Delsarte optimal codes and anticodes in terms of their generalized weights. We also present a duality theory for the new algebraic invariant, proving that the Delsarte generalized weights of a code completely determine the Delsarte generalized weights of the dual code. Our results extend the theory of generalized rank weights for Gabidulin codes. Finally, we prove the analogue for Gabidulin codes of a theorem of Wei, proving that their generalized rank weights characterize the worst-case security drops of a Gabidulin rank-metric code

    A Polymatroid Approach to Generalized Weights of Rank Metric Codes

    Get PDF
    We consider the notion of a (q,m)(q,m)-polymatroid, due to Shiromoto, and the more general notion of (q,m)(q,m)-demi-polymatroid, and show how generalized weights can be defined for them. Further, we establish a duality for these weights analogous to Wei duality for generalized Hamming weights of linear codes. The corresponding results of Ravagnani for Delsarte rank metric codes, and Martinez-Penas and Matsumoto for relative generalized rank weights are derived as a consequence.Comment: 22 pages; with minor revisions in the previous versio

    On the similarities between generalized rank and Hamming weights and their applications to network coding

    Full text link
    Rank weights and generalized rank weights have been proven to characterize error and erasure correction, and information leakage in linear network coding, in the same way as Hamming weights and generalized Hamming weights describe classical error and erasure correction, and information leakage in wire-tap channels of type II and code-based secret sharing. Although many similarities between both cases have been established and proven in the literature, many other known results in the Hamming case, such as bounds or characterizations of weight-preserving maps, have not been translated to the rank case yet, or in some cases have been proven after developing a different machinery. The aim of this paper is to further relate both weights and generalized weights, show that the results and proofs in both cases are usually essentially the same, and see the significance of these similarities in network coding. Some of the new results in the rank case also have new consequences in the Hamming case

    Partitions of Matrix Spaces With an Application to qq-Rook Polynomials

    Full text link
    We study the row-space partition and the pivot partition on the matrix space Fqn×m\mathbb{F}_q^{n \times m}. We show that both these partitions are reflexive and that the row-space partition is self-dual. Moreover, using various combinatorial methods, we explicitly compute the Krawtchouk coefficients associated with these partitions. This establishes MacWilliams-type identities for the row-space and pivot enumerators of linear rank-metric codes. We then generalize the Singleton-like bound for rank-metric codes, and introduce two new concepts of code extremality. Both of them generalize the notion of MRD codes and are preserved by trace-duality. Moreover, codes that are extremal according to either notion satisfy strong rigidity properties analogous to those of MRD codes. As an application of our results to combinatorics, we give closed formulas for the qq-rook polynomials associated with Ferrers diagram boards. Moreover, we exploit connections between matrices over finite fields and rook placements to prove that the number of matrices of rank rr over Fq\mathbb{F}_q supported on a Ferrers diagram is a polynomial in qq, whose degree is strictly increasing in rr. Finally, we investigate the natural analogues of the MacWilliams Extension Theorem for the rank, the row-space, and the pivot partitions
    • …
    corecore