89,224 research outputs found

    BoostFM: Boosted Factorization Machines for Top-N Feature-based Recommendation

    Get PDF
    Feature-based matrix factorization techniques such as Factorization Machines (FM) have been proven to achieve impressive accuracy for the rating prediction task. However, most common recommendation scenarios are formulated as a top-N item ranking problem with implicit feedback (e.g., clicks, purchases)rather than explicit ratings. To address this problem, with both implicit feedback and feature information, we propose a feature-based collaborative boosting recommender called BoostFM, which integrates boosting into factorization models during the process of item ranking. Specifically, BoostFM is an adaptive boosting framework that linearly combines multiple homogeneous component recommenders, which are repeatedly constructed on the basis of the individual FM model by a re-weighting scheme. Two ways are proposed to efficiently train the component recommenders from the perspectives of both pairwise and listwise Learning-to-Rank (L2R). The properties of our proposed method are empirically studied on three real-world datasets. The experimental results show that BoostFM outperforms a number of state-of-the-art approaches for top-N recommendation

    Query weighting for ranking model adaptation

    Get PDF
    We propose to directly measure the importance of queries in the source domain to the target domain where no rank labels of documents are available, which is referred to as query weighting. Query weighting is a key step in ranking model adaptation. As the learning object of ranking algorithms is divided by query instances, we argue that it’s more reasonable to conduct importance weighting at query level than document level. We present two query weighting schemes. The first compresses the query into a query feature vector, which aggregates all document instances in the same query, and then conducts query weighting based on the query feature vector. This method can efficiently estimate query importance by compressing query data, but the potential risk is information loss resulted from the compression. The second measures the similarity between the source query and each target query, and then combines these fine-grained similarity values for its importance estimation. Adaptation experiments on LETOR3.0 data set demonstrate that query weighting significantly outperforms document instance weighting methods.

    A multi-class approach for ranking graph nodes: models and experiments with incomplete data

    Get PDF
    After the phenomenal success of the PageRank algorithm, many researchers have extended the PageRank approach to ranking graphs with richer structures beside the simple linkage structure. In some scenarios we have to deal with multi-parameters data where each node has additional features and there are relationships between such features. This paper stems from the need of a systematic approach when dealing with multi-parameter data. We propose models and ranking algorithms which can be used with little adjustments for a large variety of networks (bibliographic data, patent data, twitter and social data, healthcare data). In this paper we focus on several aspects which have not been addressed in the literature: (1) we propose different models for ranking multi-parameters data and a class of numerical algorithms for efficiently computing the ranking score of such models, (2) by analyzing the stability and convergence properties of the numerical schemes we tune a fast and stable technique for the ranking problem, (3) we consider the issue of the robustness of our models when data are incomplete. The comparison of the rank on the incomplete data with the rank on the full structure shows that our models compute consistent rankings whose correlation is up to 60% when just 10% of the links of the attributes are maintained suggesting the suitability of our model also when the data are incomplete
    • …
    corecore