6,001 research outputs found

    Space-Efficient DFS and Applications: Simpler, Leaner, Faster

    Full text link
    The problem of space-efficient depth-first search (DFS) is reconsidered. A particularly simple and fast algorithm is presented that, on a directed or undirected input graph G=(V,E)G=(V,E) with nn vertices and mm edges, carries out a DFS in O(n+m)O(n+m) time with n+vV3log2(dv1)+O(logn)n+m+O(logn)n+\sum_{v\in V_{\ge 3}}\lceil{\log_2(d_v-1)}\rceil +O(\log n)\le n+m+O(\log n) bits of working memory, where dvd_v is the (total) degree of vv, for each vVv\in V, and V3={vVdv3}V_{\ge 3}=\{v\in V\mid d_v\ge 3\}. A slightly more complicated variant of the algorithm works in the same time with at most n+(4/5)m+O(logn)n+({4/5})m+O(\log n) bits. It is also shown that a DFS can be carried out in a graph with nn vertices and mm edges in O(n+mlog ⁣n)O(n+m\log^*\! n) time with O(n)O(n) bits or in O(n+m)O(n+m) time with either O(nloglog(4+m/n))O(n\log\log(4+{m/n})) bits or, for arbitrary integer k1k\ge 1, O(nlog(k) ⁣n)O(n\log^{(k)}\! n) bits. These results among them subsume or improve most earlier results on space-efficient DFS. Some of the new time and space bounds are shown to extend to applications of DFS such as the computation of cut vertices, bridges, biconnected components and 2-edge-connected components in undirected graphs

    The risk of misclassifying subjects within principal component based asset index.

    Get PDF
    The asset index is often used as a measure of socioeconomic status in empirical research as an explanatory variable or to control confounding. Principal component analysis (PCA) is frequently used to create the asset index. We conducted a simulation study to explore how accurately the principal component based asset index reflects the study subjects' actual poverty level, when the actual poverty level is generated by a simple factor analytic model. In the simulation study using the PC-based asset index, only 1% to 4% of subjects preserved their real position in a quintile scale of assets; between 44% to 82% of subjects were misclassified into the wrong asset quintile. If the PC-based asset index explained less than 30% of the total variance in the component variables, then we consistently observed more than 50% misclassification across quintiles of the index. The frequency of misclassification suggests that the PC-based asset index may not provide a valid measure of poverty level and should be used cautiously as a measure of socioeconomic status

    Enhancing non-melonic triangulations: A tensor model mixing melonic and planar maps

    Get PDF
    Ordinary tensor models of rank D3D\geq 3 are dominated at large NN by tree-like graphs, known as melonic triangulations. We here show that non-melonic contributions can be enhanced consistently, leading to different types of large NN limits. We first study the most generic quartic model at D=4D=4, with maximally enhanced non-melonic interactions. The existence of the 1/N1/N expansion is proved and we further characterize the dominant triangulations. This combinatorial analysis is then used to define a non-quartic, non-melonic class of models for which the large NN free energy and the relevant expectations can be calculated explicitly. They are matched with random matrix models which contain multi-trace invariants in their potentials: they possess a branched polymer phase and a 2D quantum gravity phase, and a transition between them whose entropy exponent is positive. Finally, a non-perturbative analysis of the generic quartic model is performed, which proves analyticity in the coupling constants in cardioid domains

    The Tensor Track, III

    Full text link
    We provide an informal up-to-date review of the tensor track approach to quantum gravity. In a long introduction we describe in simple terms the motivations for this approach. Then the many recent advances are summarized, with emphasis on some points (Gromov-Hausdorff limit, Loop vertex expansion, Osterwalder-Schrader positivity...) which, while important for the tensor track program, are not detailed in the usual quantum gravity literature. We list open questions in the conclusion and provide a rather extended bibliography.Comment: 53 pages, 6 figure

    Double Scaling in Tensor Models with a Quartic Interaction

    Get PDF
    In this paper we identify and analyze in detail the subleading contributions in the 1/N expansion of random tensors, in the simple case of a quartically interacting model. The leading order for this 1/N expansion is made of graphs, called melons, which are dual to particular triangulations of the D-dimensional sphere, closely related to the "stacked" triangulations. For D<6 the subleading behavior is governed by a larger family of graphs, hereafter called cherry trees, which are also dual to the D-dimensional sphere. They can be resummed explicitly through a double scaling limit. In sharp contrast with random matrix models, this double scaling limit is stable. Apart from its unexpected upper critical dimension 6, it displays a singularity at fixed distance from the origin and is clearly the first step in a richer set of yet to be discovered multi-scaling limits
    corecore