17,648 research outputs found

    Rank-based attachment leads to power law graphs

    Get PDF
    We investigate the degree distribution resulting from graph generation models based on rank-based attachment. In rank-based attachment, all vertices are ranked according to a ranking scheme. The link probability of a given vertex is proportional to its rank raised to the power -a, for some a in (0,1). Through a rigorous analysis, we show that rank-based attachment models lead to graphs with a power law degree distribution with exponent 1+1/a whenever vertices are ranked according to their degree, their age, or a randomly chosen fitness value. We also investigate the case where the ranking is based on the initial rank of each vertex; the rank of existing vertices only changes to accommodate the new vertex. Here, we obtain a sharp threshold for power law behaviour. Only if initial ranks are biased towards lower ranks, or chosen uniformly at random, we obtain a power law degree distribution with exponent 1+1/a. This indicates that the power law degree distribution often observed in nature can be explained by a rank-based attachment scheme, based on a ranking scheme that can be derived from a number of different factors; the exponent of the power law can be seen as a measure of the strength of the attachment

    Degree-degree correlations in random graphs with heavy-tailed degrees

    Get PDF
    We investigate degree-degree correlations for scale-free graph sequences. The main conclusion of this paper is that the assortativity coefficient is not the appropriate way to describe degree-dependences in scale-free random graphs. Indeed, we study the infinite volume limit of the assortativity coefficient, and show that this limit is always non-negative when the degrees have finite first but infinite third moment, i.e., when the degree exponent Ī³+1\gamma + 1 of the density satisfies Ī³āˆˆ(1,3)\gamma \in (1,3). More generally, our results show that the correlation coefficient is inappropriate to describe dependencies between random variables having infinite variance. We start with a simple model of the sample correlation of random variables XX and YY, which are linear combinations with non-negative coefficients of the same infinite variance random variables. In this case, the correlation coefficient of XX and YY is not defined, and the sample covariance converges to a proper random variable with support that is a subinterval of (āˆ’1,1)(-1,1). Further, for any joint distribution (X,Y)(X,Y) with equal marginals being non-negative power-law distributions with infinite variance (as in the case of degree-degree correlations), we show that the limit is non-negative. We next adapt these results to the assortativity in networks as described by the degree-degree correlation coefficient, and show that it is non-negative in the large graph limit when the degree distribution has an infinite third moment. We illustrate these results with several examples where the assortativity behaves in a non-sensible way. We further discuss alternatives for describing assortativity in networks based on rank correlations that are appropriate for infinite variance variables. We support these mathematical results by simulations

    A framework for evaluating statistical dependencies and rank correlations in power law graphs

    Get PDF
    We analyze dependencies in power law graph data (Web sample, Wikipedia sample and a preferential attachment graph) using statistical inference for multivariate regular variation. To the best of our knowledge, this is the first attempt to apply the well developed theory of regular variation to graph data. The new insights this yields are striking: the three above-mentioned data sets are shown to have a totally different dependence structure between different graph parameters, such as in-degree and PageRank. Based on the proposed methodology, we suggest a new measure for rank correlations. Unlike most known methods, this measure is especially sensitive to rank permutations for topranked nodes. Using this method, we demonstrate that the PageRank ranking is not sensitive to moderate changes in the damping factor

    Towards a Theory of Scale-Free Graphs: Definition, Properties, and Implications (Extended Version)

    Get PDF
    Although the ``scale-free'' literature is large and growing, it gives neither a precise definition of scale-free graphs nor rigorous proofs of many of their claimed properties. In fact, it is easily shown that the existing theory has many inherent contradictions and verifiably false claims. In this paper, we propose a new, mathematically precise, and structural definition of the extent to which a graph is scale-free, and prove a series of results that recover many of the claimed properties while suggesting the potential for a rich and interesting theory. With this definition, scale-free (or its opposite, scale-rich) is closely related to other structural graph properties such as various notions of self-similarity (or respectively, self-dissimilarity). Scale-free graphs are also shown to be the likely outcome of random construction processes, consistent with the heuristic definitions implicit in existing random graph approaches. Our approach clarifies much of the confusion surrounding the sensational qualitative claims in the scale-free literature, and offers rigorous and quantitative alternatives.Comment: 44 pages, 16 figures. The primary version is to appear in Internet Mathematics (2005

    Spectral centrality measures in complex networks

    Full text link
    Complex networks are characterized by heterogeneous distributions of the degree of nodes, which produce a large diversification of the roles of the nodes within the network. Several centrality measures have been introduced to rank nodes based on their topological importance within a graph. Here we review and compare centrality measures based on spectral properties of graph matrices. We shall focus on PageRank, eigenvector centrality and the hub/authority scores of HITS. We derive simple relations between the measures and the (in)degree of the nodes, in some limits. We also compare the rankings obtained with different centrality measures.Comment: 11 pages, 10 figures, 5 tables. Final version published in Physical Review

    Scaling and Universality in City Space Syntax: between Zipf and Matthew

    Full text link
    We report about universality of rank-integration distributions of open spaces in city space syntax similar to the famous rank-size distributions of cities (Zipf's law). We also demonstrate that the degree of choice an open space represents for other spaces directly linked to it in a city follows a power law statistic. Universal statistical behavior of space syntax measures uncovers the universality of the city creation mechanism. We suggest that the observed universality may help to establish the international definition of a city as a specific land use pattern.Comment: 24 pages, 5 *.eps figure
    • ā€¦
    corecore