133 research outputs found

    Rank-1 lattice rules for multivariate integration in spaces of permutation-invariant functions: Error bounds and tractability

    Full text link
    We study multivariate integration of functions that are invariant under permutations (of subsets) of their arguments. We find an upper bound for the nnth minimal worst case error and show that under certain conditions, it can be bounded independent of the number of dimensions. In particular, we study the application of unshifted and randomly shifted rank-11 lattice rules in such a problem setting. We derive conditions under which multivariate integration is polynomially or strongly polynomially tractable with the Monte Carlo rate of convergence O(n−1/2)O(n^{-1/2}). Furthermore, we prove that those tractability results can be achieved with shifted lattice rules and that the shifts are indeed necessary. Finally, we show the existence of rank-11 lattice rules whose worst case error on the permutation- and shift-invariant spaces converge with (almost) optimal rate. That is, we derive error bounds of the form O(n−λ/2)O(n^{-\lambda/2}) for all 1≤λ<2α1 \leq \lambda < 2 \alpha, where α\alpha denotes the smoothness of the spaces. Keywords: Numerical integration, Quadrature, Cubature, Quasi-Monte Carlo methods, Rank-1 lattice rules.Comment: 26 pages; minor changes due to reviewer's comments; the final publication is available at link.springer.co

    Construction of quasi-Monte Carlo rules for multivariate integration in spaces of permutation-invariant functions

    Full text link
    We study multivariate integration of functions that are invariant under the permutation (of a subset) of their arguments. Recently, in Nuyens, Suryanarayana, and Weimar (Adv. Comput. Math. (2016), 42(1):55--84), the authors derived an upper estimate for the nnth minimal worst case error for such problems, and showed that under certain conditions this upper bound only weakly depends on the dimension. We extend these results by proposing two (semi-) explicit construction schemes. We develop a component-by-component algorithm to find the generating vector for a shifted rank-11 lattice rule that obtains a rate of convergence arbitrarily close to O(n−α)\mathcal{O}(n^{-\alpha}), where α>1/2\alpha>1/2 denotes the smoothness of our function space and nn is the number of cubature nodes. Further, we develop a semi-constructive algorithm that builds on point sets which can be used to approximate the integrands of interest with a small error; the cubature error is then bounded by the error of approximation. Here the same rate of convergence is achieved while the dependence of the error bounds on the dimension dd is significantly improved

    Strang splitting in combination with rank-11 and rank-rr lattices for the time-dependent Schr\"odinger equation

    Full text link
    We approximate the solution for the time dependent Schr\"odinger equation (TDSE) in two steps. We first use a pseudo-spectral collocation method that uses samples of functions on rank-1 or rank-r lattice points with unitary Fourier transforms. We then get a system of ordinary differential equations in time, which we solve approximately by stepping in time using the Strang splitting method. We prove that the numerical scheme proposed converges quadratically with respect to the time step size, given that the potential is in a Korobov space with the smoothness parameter greater than 9/29/2. Particularly, we prove that the required degree of smoothness is independent of the dimension of the problem. We demonstrate our new method by comparing with results using sparse grids from [12], with several numerical examples showing large advantage for our new method and pushing the examples to higher dimensionality. The proposed method has two distinctive features from a numerical perspective: (i) numerical results show the error convergence of time discretization is consistent even for higher-dimensional problems; (ii) by using the rank-11 lattice points, the solution can be efficiently computed (and further time stepped) using only 11-dimensional Fast Fourier Transforms.Comment: Modified. 40pages, 5 figures. The proof of Lemma 1 is updated after the paper is publishe
    • …
    corecore