7,235 research outputs found

    Lattice initial segments of the hyperdegrees

    Full text link
    We affirm a conjecture of Sacks [1972] by showing that every countable distributive lattice is isomorphic to an initial segment of the hyperdegrees, Dh\mathcal{D}_{h}. In fact, we prove that every sublattice of any hyperarithmetic lattice (and so, in particular, every countable locally finite lattice) is isomorphic to an initial segment of Dh\mathcal{D}_{h}. Corollaries include the decidability of the two quantifier theory of % \mathcal{D}_{h} and the undecidability of its three quantifier theory. The key tool in the proof is a new lattice representation theorem that provides a notion of forcing for which we can prove a version of the fusion lemma in the hyperarithmetic setting and so the preservation of ω1CK\omega _{1}^{CK}. Somewhat surprisingly, the set theoretic analog of this forcing does not preserve ω1\omega _{1}. On the other hand, we construct countable lattices that are not isomorphic to an initial segment of Dh\mathcal{D}_{h}

    Source Location of Forced Oscillations Using Synchrophasor and SCADA Data

    Get PDF
    Recent advances in synchrophasor based oscillation monitoring algorithms have allowed engineers to detect oscillation issues that may have previously gone undetected. Although such an oscillation can be flagged and its oscillation shape can indicate the general vicinity of its source, low number of synchrophasors means that a specific generator or load that is the root cause of an oscillation cannot easily be pinpointed. Fortunately, SCADA serves as a much more readily available telemetered source of data if only at a relatively low sampling rate of 1 sample every 1 to 10 seconds. This paper shows that it is possible to combine synchrophasor and SCADA data for effective source location of forced oscillations. For multiple recent oscillation events, the proposed automatic methods were successful in correct identification of the oscillation source which was confirmed in each case by discussion with respective generation plant owners

    Whole-transcriptome, high-throughput RNA sequence analysis of the bovine macrophage response to Mycobacterium bovis infection in vitro

    Get PDF
    BACKGROUND: Mycobacterium bovis, the causative agent of bovine tuberculosis, is an intracellular pathogen that can persist inside host macrophages during infection via a diverse range of mechanisms that subvert the host immune response. In the current study, we have analysed and compared the transcriptomes of M. bovis-infected monocyte-derived macrophages (MDM) purified from six Holstein-Friesian females with the transcriptomes of non-infected control MDM from the same animals over a 24 h period using strand-specific RNA sequencing (RNA-seq). In addition, we compare gene expression profiles generated using RNA-seq with those previously generated by us using the high-density Affymetrix® GeneChip® Bovine Genome Array platform from the same MDM-extracted RNA. RESULTS: A mean of 7.2 million reads from each MDM sample mapped uniquely and unambiguously to single Bos taurus reference genome locations. Analysis of these mapped reads showed 2,584 genes (1,392 upregulated; 1,192 downregulated) and 757 putative natural antisense transcripts (558 upregulated; 119 downregulated) that were differentially expressed based on sense and antisense strand data, respectively (adjusted P-value ≤ 0.05). Of the differentially expressed genes, 694 were common to both the sense and antisense data sets, with the direction of expression (i.e. up- or downregulation) positively correlated for 693 genes and negatively correlated for the remaining gene. Gene ontology analysis of the differentially expressed genes revealed an enrichment of immune, apoptotic and cell signalling genes. Notably, the number of differentially expressed genes identified from RNA-seq sense strand analysis was greater than the number of differentially expressed genes detected from microarray analysis (2,584 genes versus 2,015 genes). Furthermore, our data reveal a greater dynamic range in the detection and quantification of gene transcripts for RNA-seq compared to microarray technology. CONCLUSIONS: This study highlights the value of RNA-seq in identifying novel immunomodulatory mechanisms that underlie host-mycobacterial pathogen interactions during infection, including possible complex post-transcriptional regulation of host gene expression involving antisense RNA

    Multi-kilowatt modularized spacecraft power processing system development

    Get PDF
    A review of existing information pertaining to spacecraft power processing systems and equipment was accomplished with a view towards applicability to the modularization of multi-kilowatt power processors. Power requirements for future spacecraft were determined from the NASA mission model-shuttle systems payload data study which provided the limits for modular power equipment capabilities. Three power processing systems were compared to evaluation criteria to select the system best suited for modularity. The shunt regulated direct energy transfer system was selected by this analysis for a conceptual design effort which produced equipment specifications, schematics, envelope drawings, and power module configurations

    Spatial & Temporal Agnostic Deep-Learning Based Radio Fingerprinting

    Get PDF
    Radio fingerprinting is a technique that validates wireless devices based on their unique radio frequency (RF) signals. This method is highly feasible because RF signals carry distinct hardware variations introduced during manufacturing. The security and trustworthiness of current and future wireless networks heavily rely on radio fingerprinting. In addition to identifying individual devices, it can also differentiate mission-critical targets. Despite significant efforts in the literature, existing radio fingerprinting methods require improved robustness, scalability, and resilience. This study focuses on the challenges of spatial-temporal variations in the wireless environment. Many prior approaches overlook the complex numerical structure of the in-phase and quadrature (I/Q) data by treating real and imaginary components separately. This approach results in the loss of essential information encoded in the signal\u27s phase and amplitude, leading to lower accuracy. This thesis proposes several enhancements. First, we treat the entire complex structure of the I/Q data as a single input to a complex-valued convolutional neural network (CVNN), thereby improving the model\u27s accuracy. Second, conduct extensive experiments to determine optimal pre-processing parameters, ensuring that over-optimistic conclusions about RF fingerprinting performance are avoided. Third, we compare various activation functions and transfer learning-based fine-tuning and a triplet network to address the variations the wireless environment introduces in scenarios involving different locations and times. We use the concept of a ``device rank\u27\u27 metric to perform device identification with certainty based on RF fingerprinting. Our work concretely proves that CVNN outperforms CNN for radio fingerprinting. Concatenated Rectified Linear Units (CReLU) activation function and fine-tuning-based transfer learning perform the best for cross-location and time device fingerprinting. Adviser: Nirnimesh Ghos

    A Computational Approach to Finding Novel Targets for Existing Drugs

    Get PDF
    Repositioning existing drugs for new therapeutic uses is an efficient approach to drug discovery. We have developed a computational drug repositioning pipeline to perform large-scale molecular docking of small molecule drugs against protein drug targets, in order to map the drug-target interaction space and find novel interactions. Our method emphasizes removing false positive interaction predictions using criteria from known interaction docking, consensus scoring, and specificity. In all, our database contains 252 human protein drug targets that we classify as reliable-for-docking as well as 4621 approved and experimental small molecule drugs from DrugBank. These were cross-docked, then filtered through stringent scoring criteria to select top drug-target interactions. In particular, we used MAPK14 and the kinase inhibitor BIM-8 as examples where our stringent thresholds enriched the predicted drug-target interactions with known interactions up to 20 times compared to standard score thresholds. We validated nilotinib as a potent MAPK14 inhibitor in vitro (IC50 40 nM), suggesting a potential use for this drug in treating inflammatory diseases. The published literature indicated experimental evidence for 31 of the top predicted interactions, highlighting the promising nature of our approach. Novel interactions discovered may lead to the drug being repositioned as a therapeutic treatment for its off-target's associated disease, added insight into the drug's mechanism of action, and added insight into the drug's side effects
    corecore