752 research outputs found

    Are there any good digraph width measures?

    Full text link
    Several different measures for digraph width have appeared in the last few years. However, none of them shares all the "nice" properties of treewidth: First, being \emph{algorithmically useful} i.e. admitting polynomial-time algorithms for all \MS1-definable problems on digraphs of bounded width. And, second, having nice \emph{structural properties} i.e. being monotone under taking subdigraphs and some form of arc contractions. As for the former, (undirected) \MS1 seems to be the least common denominator of all reasonably expressive logical languages on digraphs that can speak about the edge/arc relation on the vertex set.The latter property is a necessary condition for a width measure to be characterizable by some version of the cops-and-robber game characterizing the ordinary treewidth. Our main result is that \emph{any reasonable} algorithmically useful and structurally nice digraph measure cannot be substantially different from the treewidth of the underlying undirected graph. Moreover, we introduce \emph{directed topological minors} and argue that they are the weakest useful notion of minors for digraphs

    Zero forcing number: Results for computation and comparison with other graph parameters

    Get PDF
    The zero forcing number of a graph is the minimum size of a zero forcing set. This parameter is useful in the minimum rank/maximum nullity problem, as it gives an upper bound to the maximum nullity. Results for determining graphs with extreme zero forcing numbers, for determining the zero forcing number of a graph with a cut-vertex, and for determining the zero forcing number of unicyclic graphs are presented. The zero forcing number is compared to the path cover number and the maximum nullity with equality of zero forcing number and path cover number shown for all cacti and equality of zero forcing number and maximum nullity shown for a subset of cacti

    Are there any good digraph width measures?

    Get PDF
    Many width measures for directed graphs have been proposed in the last few years in pursuit of generalizing (the notion of) treewidth to directed graphs. However, none of these measures possesses, at the same time, the major properties of treewidth, namely, 1. being algorithmically useful , that is, admitting polynomial-time algorithms for a large class of problems on digraphs of bounded width (e.g. the problems definable in MSO1MSO1); 2. having nice structural properties such as being (at least nearly) monotone under taking subdigraphs and some form of arc contractions (property closely related to characterizability by particular cops-and-robber games). We investigate the question whether the search for directed treewidth counterparts has been unsuccessful by accident, or whether it has been doomed to fail from the beginning. Our main result states that any reasonable width measure for directed graphs which satisfies the two properties above must necessarily be similar to treewidth of the underlying undirected graph

    Primer for the algebraic geometry of sandpiles

    Full text link
    The Abelian Sandpile Model (ASM) is a game played on a graph realizing the dynamics implicit in the discrete Laplacian matrix of the graph. The purpose of this primer is to apply the theory of lattice ideals from algebraic geometry to the Laplacian matrix, drawing out connections with the ASM. An extended summary of the ASM and of the required algebraic geometry is provided. New results include a characterization of graphs whose Laplacian lattice ideals are complete intersection ideals; a new construction of arithmetically Gorenstein ideals; a generalization to directed multigraphs of a duality theorem between elements of the sandpile group of a graph and the graph's superstable configurations (parking functions); and a characterization of the top Betti number of the minimal free resolution of the Laplacian lattice ideal as the number of elements of the sandpile group of least degree. A characterization of all the Betti numbers is conjectured.Comment: 45 pages, 14 figures. v2: corrected typo

    Linear kernels for outbranching problems in sparse digraphs

    Full text link
    In the kk-Leaf Out-Branching and kk-Internal Out-Branching problems we are given a directed graph DD with a designated root rr and a nonnegative integer kk. The question is to determine the existence of an outbranching rooted at rr that has at least kk leaves, or at least kk internal vertices, respectively. Both these problems were intensively studied from the points of view of parameterized complexity and kernelization, and in particular for both of them kernels with O(k2)O(k^2) vertices are known on general graphs. In this work we show that kk-Leaf Out-Branching admits a kernel with O(k)O(k) vertices on H\mathcal{H}-minor-free graphs, for any fixed family of graphs H\mathcal{H}, whereas kk-Internal Out-Branching admits a kernel with O(k)O(k) vertices on any graph class of bounded expansion.Comment: Extended abstract accepted for IPEC'15, 27 page

    The multivariate signed Bollobas-Riordan polynomial

    Get PDF
    We generalise the signed Bollobas-Riordan polynomial of S. Chmutov and I. Pak [Moscow Math. J. 7 (2007), no. 3, 409-418] to a multivariate signed polynomial Z and study its properties. We prove the invariance of Z under the recently defined partial duality of S. Chmutov [J. Combinatorial Theory, Ser. B, 99 (3): 617-638, 2009] and show that the duality transformation of the multivariate Tutte polynomial is a direct consequence of it.Comment: 17 pages, 2 figures. Published version: a section added about the quasi-tree expansion of the multivariate Bollobas-Riordan polynomia
    corecore