117 research outputs found

    Istraživanje simultane lokalizacije, kalibracije i kartiranja umreženim robotskim sustavima

    Get PDF
    In a network robot system, a robot and a sensor network are integrated smoothly to develop their advantages and benefit from each other. Robot localization, sensor network calibration and environment mapping are three coupled issues to be solved once network robot system is introduced into a service environment. In this article, the problem of simultaneous localization, calibration and mapping is raised in order to improve their precision. The coupled relations among localization, calibration and mapping are denoted as a joint conditional distribution and then decomposed into three separate analytic terms according to Bayesian and Markov properties. The framework of Rao-Blackwellized particle filtering is used to solve the three analytic terms, in which extended particle filter is used for localization and unscented Kalman filter is used for both calibration and mapping. Simulations have been performed to demonstrate the validity and efficiency of the proposed solutions.U umreženom robotskom sustavu, robot i senzorska mreža su međusobno integrirani i povezani na način da i jedan i drugi iskoriste svoje prednosti, te da imaju koristi jedan od drugoga. Kako bi umreženi robotski sustav mogao djelovati u radnom okruženju potrebno je riješiti tri međusobno povezana problema: lokalizaciju, kalibraciju senzorske mreže i kartiranje prostora. U ovom radu razmatraju se problemi istodobne lokalizacije, kalibracije i kartiranja te se razmatraju mogućnosti poboljšanja njihove preciznosti. Povezanost lokalizacije, kartiranja i kalibracije predstavljena je pomoću zajedničke uvjetne razdiobe i zatim rastavljena u tri razdvojena analitička izraza korištenjem Bayesovih i Markovljevih svojstava. Za rješavanje svih triju analitičkih izraza koristi se Rao-Blackwell čestično filtriranje, pri čemu se prošireni čestični filtar koristi kod lokalizacije a nederivirajući Kalmanov filtar za kalibraciju i kartiranje. Ispravnost i efikasnost predloženog pristupa pokazana je kroz provedene simulacije

    How Physicality Enables Trust: A New Era of Trust-Centered Cyberphysical Systems

    Full text link
    Multi-agent cyberphysical systems enable new capabilities in efficiency, resilience, and security. The unique characteristics of these systems prompt a reevaluation of their security concepts, including their vulnerabilities, and mechanisms to mitigate these vulnerabilities. This survey paper examines how advancement in wireless networking, coupled with the sensing and computing in cyberphysical systems, can foster novel security capabilities. This study delves into three main themes related to securing multi-agent cyberphysical systems. First, we discuss the threats that are particularly relevant to multi-agent cyberphysical systems given the potential lack of trust between agents. Second, we present prospects for sensing, contextual awareness, and authentication, enabling the inference and measurement of ``inter-agent trust" for these systems. Third, we elaborate on the application of quantifiable trust notions to enable ``resilient coordination," where ``resilient" signifies sustained functionality amid attacks on multiagent cyberphysical systems. We refer to the capability of cyberphysical systems to self-organize, and coordinate to achieve a task as autonomy. This survey unveils the cyberphysical character of future interconnected systems as a pivotal catalyst for realizing robust, trust-centered autonomy in tomorrow's world

    Autonomous navigation strategies for UGVs/UAVs

    Get PDF

    QoS-Aware Energy Management and Node Scheduling Schemes for Sensor Network-Based Surveillance Applications

    Full text link
    Recent advances in wireless technologies have led to an increased deployment of Wireless Sensor Networks (WSNs) for a plethora of diverse surveillance applications such as health, military, and environmental. However, sensor nodes in WSNs usually suffer from short device lifetime due to severe energy constraints and therefore, cannot guarantee to meet the Quality of Service (QoS) needs of various applications. This is proving to be a major hindrance to the widespread adoption of WSNs for such applications. Therefore, to extend the lifetime of WSNs, it is critical to optimize the energy usage in sensor nodes that are often deployed in remote and hostile terrains. To this effect, several energy management schemes have been proposed recently. Node scheduling is one such strategy that can prolong the lifetime of WSNs and also helps to balance the workload among the sensor nodes. In this article, we discuss on the energy management techniques of WSN with a particular emphasis on node scheduling and propose an energy management life-cycle model and an energy conservation pyramid to extend the network lifetime of WSNs. We have provided a detailed classification and evaluation of various node scheduling schemes in terms of their ability to fulfill essential QoS requirements, namely coverage, connectivity, fault tolerance, and security. We considered essential design issues such as network type, deployment pattern, sensing model in the classification process. Furthermore, we have discussed the operational characteristics of schemes with their related merits and demerits. We have compared the efficacy of a few well known graph-based scheduling schemes with suitable performance analysis graph. Finally, we study challenges in designing and implementing node scheduling schemes from a QoS perspective and outline open research problems

    Efficient Mission Planning for Robot Networks in Communication Constrained Environments

    Get PDF
    Many robotic systems are remotely operated nowadays that require uninterrupted connection and safe mission planning. Such systems are commonly found in military drones, search and rescue operations, mining robotics, agriculture, and environmental monitoring. Different robotic systems may employ disparate communication modalities such as radio network, visible light communication, satellite, infrared, Wi-Fi. However, in an autonomous mission where the robots are expected to be interconnected, communication constrained environment frequently arises due to the out of range problem or unavailability of the signal. Furthermore, several automated projects (building construction, assembly line) do not guarantee uninterrupted communication, and a safe project plan is required that optimizes collision risks, cost, and duration. In this thesis, we propose four pronged approaches to alleviate some of these issues: 1) Communication aware world mapping; 2) Communication preserving using the Line-of-Sight (LoS); 3) Communication aware safe planning; and 4) Multi-Objective motion planning for navigation. First, we focus on developing a communication aware world map that integrates traditional world models with the planning of multi-robot placement. Our proposed communication map selects the optimal placement of a chain of intermediate relay vehicles in order to maximize communication quality to a remote unit. We also vi propose an algorithm to build a min-Arborescence tree when there are multiple remote units to be served. Second, in communication denied environments, we use Line-of-Sight (LoS) to establish communication between mobile robots, control their movements and relay information to other autonomous units. We formulate and study the complexity of a multi-robot relay network positioning problem and propose approximation algorithms that restore visibility based connectivity through the relocation of one or more robots. Third, we develop a framework to quantify the safety score of a fully automated robotic mission where the coexistence of human and robot may pose a collision risk. A number of alternate mission plans are analyzed using motion planning algorithms to select the safest one. Finally, an efficient multi-objective optimization based path planning for the robots is developed to deal with several Pareto optimal cost attributes
    corecore