6,412 research outputs found

    Social Network Analysis Based Localization Technique with Clustered Closeness Centrality for 3D Wireless Sensor Networks

    Full text link
    [EN] In this paper, we proposed a new wireless localization technique based on the ideology of social network analysis (SNA), to study the different properties of networks as a graph. Centrality is a main concept in SNA, so we propose using closeness centrality (CC) as a measurement to denote the importance of the node inside the network due to its geo-location to others. The node with highest degree of CC is chosen as a cluster heads, then each cluster head can form its trilateration process to collect data from its cluster. The selection of closest cluster based on CC values, and the unknown node's location can be estimated through the trilateration process. To form a perfect trilateration, the cluster head chooses three anchor nodes. The proposed algorithm provides high accuracy even in different network topologies like concave shape, O shape, and C shape as compared to existing received signal strength indicator (RSSI) techniques. Matlab simulation results based on practical radio propagation data sets showed a localization error of 0.32 m with standard deviation of 0.26 m.This work was fully supported by the Vice Chancellor Doctoral Scholarship at Auckland University of Technology, New Zealand.Ahmad, T.; Li, XJ.; Seet, B.; Cano, J. (2020). Social Network Analysis Based Localization Technique with Clustered Closeness Centrality for 3D Wireless Sensor Networks. Electronics. 9(5):1-19. https://doi.org/10.3390/electronics9050738S11995Zhou, B., Yao, X., Yang, L., Yang, S., Wu, S., Kim, Y., & Ai, L. (2019). Accurate Rigid Body Localization Using DoA Measurements from a Single Base Station. Electronics, 8(6), 622. doi:10.3390/electronics8060622Ahmad, T., Li, X., & Seet, B.-C. (2017). Parametric Loop Division for 3D Localization in Wireless Sensor Networks. Sensors, 17(7), 1697. doi:10.3390/s17071697Kaur, A., Kumar, P., & Gupta, G. P. (2019). A weighted centroid localization algorithm for randomly deployed wireless sensor networks. Journal of King Saud University - Computer and Information Sciences, 31(1), 82-91. doi:10.1016/j.jksuci.2017.01.007Khelifi, F., Bradai, A., Benslimane, A., Rawat, P., & Atri, M. (2018). A Survey of Localization Systems in Internet of Things. Mobile Networks and Applications, 24(3), 761-785. doi:10.1007/s11036-018-1090-3Sanchez-Iborra, R., G. Liaño, I., Simoes, C., Couñago, E., & Skarmeta, A. (2018). Tracking and Monitoring System Based on LoRa Technology for Lightweight Boats. Electronics, 8(1), 15. doi:10.3390/electronics8010015Sayed, A. H., Tarighat, A., & Khajehnouri, N. (2005). Network-based wireless location: challenges faced in developing techniques for accurate wireless location information. IEEE Signal Processing Magazine, 22(4), 24-40. doi:10.1109/msp.2005.1458275Maşazade, E., Ruixin Niu, Varshney, P. K., & Keskinoz, M. (2010). Energy Aware Iterative Source Localization for Wireless Sensor Networks. IEEE Transactions on Signal Processing, 58(9), 4824-4835. doi:10.1109/tsp.2010.2051433Yang, X., Kong, Q., & Xie, X. (2009). One-Dimensional Localization Algorithm Based on Signal Strength Ratio. International Journal of Distributed Sensor Networks, 5(1), 79-79. doi:10.1080/15501320802571822Xie, S., Wang, T., Hao, X., Yang, M., Zhu, Y., & Li, Y. (2019). Localization and Frequency Identification of Large-Range Wide-Band Electromagnetic Interference Sources in Electromagnetic Imaging System. Electronics, 8(5), 499. doi:10.3390/electronics8050499Zhu, X., Wu, X., & Chen, G. (2013). Relative localization for wireless sensor networks with linear topology. Computer Communications, 36(15-16), 1581-1591. doi:10.1016/j.comcom.2013.07.007Meng, W., Xiao, W., & Xie, L. (2011). An Efficient EM Algorithm for Energy-Based Multisource Localization in Wireless Sensor Networks. IEEE Transactions on Instrumentation and Measurement, 60(3), 1017-1027. doi:10.1109/tim.2010.2047035Lim, H., & Hou, J. C. (2009). Distributed localization for anisotropic sensor networks. ACM Transactions on Sensor Networks, 5(2), 1-26. doi:10.1145/1498915.1498917Xiaohong Sheng, & Yu-Hen Hu. (2005). Maximum likelihood multiple-source localization using acoustic energy measurements with wireless sensor networks. IEEE Transactions on Signal Processing, 53(1), 44-53. doi:10.1109/tsp.2004.838930Yun Wang, Xiaodong Wang, Demin Wang, & Agrawal, D. P. (2009). Range-Free Localization Using Expected Hop Progress in Wireless Sensor Networks. IEEE Transactions on Parallel and Distributed Systems, 20(10), 1540-1552. doi:10.1109/tpds.2008.239Huang, H., & Zheng, Y. R. (2018). Node localization with AoA assistance in multi-hop underwater sensor networks. Ad Hoc Networks, 78, 32-41. doi:10.1016/j.adhoc.2018.05.005Zàruba, G. V., Huber, M., Kamangar, F. A., & Chlamtac, I. (2006). Indoor location tracking using RSSI readings from a single Wi-Fi access point. Wireless Networks, 13(2), 221-235. doi:10.1007/s11276-006-5064-1Singh, M., & Khilar, P. M. (2015). An analytical geometric range free localization scheme based on mobile beacon points in wireless sensor network. Wireless Networks, 22(8), 2537-2550. doi:10.1007/s11276-015-1116-8Yiqiang Chen, Qiang Yang, Jie Yin, & Xiaoyong Chai. (2006). Power-efficient access-point selection for indoor location estimation. IEEE Transactions on Knowledge and Data Engineering, 18(7), 877-888. doi:10.1109/tkde.2006.112Alzoubi, K., Li, X.-Y., Wang, Y., Wan, P.-J., & Frieder, O. (2003). Geometric spanners for wireless ad hoc networks. IEEE Transactions on Parallel and Distributed Systems, 14(4), 408-421. doi:10.1109/tpds.2003.1195412Safa, H. (2014). A novel localization algorithm for large scale wireless sensor networks. Computer Communications, 45, 32-46. doi:10.1016/j.comcom.2014.03.020Kaemarungsi, K., & Krishnamurthy, P. (2012). Analysis of WLAN’s received signal strength indication for indoor location fingerprinting. Pervasive and Mobile Computing, 8(2), 292-316. doi:10.1016/j.pmcj.2011.09.003Patwari, N., Hero, A. O., Perkins, M., Correal, N. S., & O’Dea, R. J. (2003). Relative location estimation in wireless sensor networks. IEEE Transactions on Signal Processing, 51(8), 2137-2148. doi:10.1109/tsp.2003.814469Niculescu, D. (2003). Telecommunication Systems, 22(1/4), 267-280. doi:10.1023/a:1023403323460Mahyar, H., Hasheminezhad, R., Ghalebi K., E., Nazemian, A., Grosu, R., Movaghar, A., & Rabiee, H. R. (2018). Compressive sensing of high betweenness centrality nodes in networks. Physica A: Statistical Mechanics and its Applications, 497, 166-184. doi:10.1016/j.physa.2017.12.145Plets, D., Bastiaens, S., Martens, L., & Joseph, W. (2019). An Analysis of the Impact of LED Tilt on Visible Light Positioning Accuracy. Electronics, 8(4), 389. doi:10.3390/electronics8040389RSSI Datasethttps://github.com/pspachos/RSSI-DatasetAhmad, T., Li, X. J., & Seet, B.-C. (2019). Noise Reduction Scheme for Parametric Loop Division 3D Wireless Localization Algorithm Based on Extended Kalman Filtering. Journal of Sensor and Actuator Networks, 8(2), 24. doi:10.3390/jsan8020024Benson, S. J., Ye, Y., & Zhang, X. (2000). Solving Large-Scale Sparse Semidefinite Programs for Combinatorial Optimization. SIAM Journal on Optimization, 10(2), 443-461. doi:10.1137/s105262349732800

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Efficient AoA-based wireless indoor localization for hospital outpatients using mobile devices

    Get PDF
    The motivation of this work is to help outpatients find their corresponding departments or clinics, thus, it needs to provide indoor positioning services with a room-level accuracy. Unlike wireless outdoor localization that is dominated by the global positioning system (GPS), wireless indoor localization is still an open issue. Many different schemes are being developed to meet the increasing demand for indoor localization services. In this paper, we investigated the AoA-based wireless indoor localization for outpatients’ wayfinding in a hospital, where Wi-Fi access points (APs) are deployed, in line, on the ceiling. The target position can be determined by a mobile device, like a smartphone, through an efficient geometric calculation with two known APs coordinates and the angles of the incident radios. All possible positions in which the target may appear have been comprehensively investigated, and the corresponding solutions were proven to be the same. Experimental results show that localization error was less than 2.5 m, about 80% of the time, which can satisfy the outpatients’ requirements for wayfinding

    A Robust Zero-Calibration RF-based Localization System for Realistic Environments

    Full text link
    Due to the noisy indoor radio propagation channel, Radio Frequency (RF)-based location determination systems usually require a tedious calibration phase to construct an RF fingerprint of the area of interest. This fingerprint varies with the used mobile device, changes of the transmit power of smart access points (APs), and dynamic changes in the environment; requiring re-calibration of the area of interest; which reduces the technology ease of use. In this paper, we present IncVoronoi: a novel system that can provide zero-calibration accurate RF-based indoor localization that works in realistic environments. The basic idea is that the relative relation between the received signal strength from two APs at a certain location reflects the relative distance from this location to the respective APs. Building on this, IncVoronoi incrementally reduces the user ambiguity region based on refining the Voronoi tessellation of the area of interest. IncVoronoi also includes a number of modules to efficiently run in realtime as well as to handle practical deployment issues including the noisy wireless environment, obstacles in the environment, heterogeneous devices hardware, and smart APs. We have deployed IncVoronoi on different Android phones using the iBeacons technology in a university campus. Evaluation of IncVoronoi with a side-by-side comparison with traditional fingerprinting techniques shows that it can achieve a consistent median accuracy of 2.8m under different scenarios with a low beacon density of one beacon every 44m2. Compared to fingerprinting techniques, whose accuracy degrades by at least 156%, this accuracy comes with no training overhead and is robust to the different user devices, different transmit powers, and over temporal changes in the environment. This highlights the promise of IncVoronoi as a next generation indoor localization system.Comment: 9 pages, 13 figures, published in SECON 201

    RFID Localisation For Internet Of Things Smart Homes: A Survey

    Full text link
    The Internet of Things (IoT) enables numerous business opportunities in fields as diverse as e-health, smart cities, smart homes, among many others. The IoT incorporates multiple long-range, short-range, and personal area wireless networks and technologies into the designs of IoT applications. Localisation in indoor positioning systems plays an important role in the IoT. Location Based IoT applications range from tracking objects and people in real-time, assets management, agriculture, assisted monitoring technologies for healthcare, and smart homes, to name a few. Radio Frequency based systems for indoor positioning such as Radio Frequency Identification (RFID) is a key enabler technology for the IoT due to its costeffective, high readability rates, automatic identification and, importantly, its energy efficiency characteristic. This paper reviews the state-of-the-art RFID technologies in IoT Smart Homes applications. It presents several comparable studies of RFID based projects in smart homes and discusses the applications, techniques, algorithms, and challenges of adopting RFID technologies in IoT smart home systems.Comment: 18 pages, 2 figures, 3 table
    • …
    corecore