961 research outputs found

    Coverage Protocols for Wireless Sensor Networks: Review and Future Directions

    Full text link
    The coverage problem in wireless sensor networks (WSNs) can be generally defined as a measure of how effectively a network field is monitored by its sensor nodes. This problem has attracted a lot of interest over the years and as a result, many coverage protocols were proposed. In this survey, we first propose a taxonomy for classifying coverage protocols in WSNs. Then, we classify the coverage protocols into three categories (i.e. coverage aware deployment protocols, sleep scheduling protocols for flat networks, and cluster-based sleep scheduling protocols) based on the network stage where the coverage is optimized. For each category, relevant protocols are thoroughly reviewed and classified based on the adopted coverage techniques. Finally, we discuss open issues (and recommend future directions to resolve them) associated with the design of realistic coverage protocols. Issues such as realistic sensing models, realistic energy consumption models, realistic connectivity models and sensor localization are covered

    Application of rasch model on resilience in higher education: an examination of validity and reliability of Malaysian academician happiness index (MAHI)

    Get PDF
    This preliminary study was conducted to examine and verify the validity and reliability of the instrument on the Malaysian Academician Happiness Index (MAHI) on resilience. MAHI could be seen as a tool to measure the level of happiness and stress of academicians before determining how resilient the academicians were. Resilience can be defined as a mental ability of a person to recover quickly from illness or depression. MAHI instrument consisted of 66 items. The instrument was distributed to 40 academicians from three groups of universities which were the Focus University, Comprehensive University and Research University is using a survey technique. The instrument was developed to measure three main constructs which were the organization, individual and social that would affect the happiness and stress levels of academicians. This preliminary study employed the Rasch Measurement Model uses Winsteps software version 3.69.1.11. to examine the validity and reliability of the items. The results of the analysis of the MAHI instrument showed that the item reliability was 0.87, person reliability was 0.83 and value of Alpha Cronbach was 0.84. Meanwhile, misfit analysis showed that only there was one item with 1.46 logit that could be considered for dropping or needed improvement. Therefore, it highlighted that most of the items met the constructs’ need and can be used as a measurement indicator of MAHI. The implication of this instrument can help Malaysian academicians to be more resilient in facing challenges in the future

    Social Network Analysis Based Localization Technique with Clustered Closeness Centrality for 3D Wireless Sensor Networks

    Full text link
    [EN] In this paper, we proposed a new wireless localization technique based on the ideology of social network analysis (SNA), to study the different properties of networks as a graph. Centrality is a main concept in SNA, so we propose using closeness centrality (CC) as a measurement to denote the importance of the node inside the network due to its geo-location to others. The node with highest degree of CC is chosen as a cluster heads, then each cluster head can form its trilateration process to collect data from its cluster. The selection of closest cluster based on CC values, and the unknown node's location can be estimated through the trilateration process. To form a perfect trilateration, the cluster head chooses three anchor nodes. The proposed algorithm provides high accuracy even in different network topologies like concave shape, O shape, and C shape as compared to existing received signal strength indicator (RSSI) techniques. Matlab simulation results based on practical radio propagation data sets showed a localization error of 0.32 m with standard deviation of 0.26 m.This work was fully supported by the Vice Chancellor Doctoral Scholarship at Auckland University of Technology, New Zealand.Ahmad, T.; Li, XJ.; Seet, B.; Cano, J. (2020). Social Network Analysis Based Localization Technique with Clustered Closeness Centrality for 3D Wireless Sensor Networks. Electronics. 9(5):1-19. https://doi.org/10.3390/electronics9050738S11995Zhou, B., Yao, X., Yang, L., Yang, S., Wu, S., Kim, Y., & Ai, L. (2019). Accurate Rigid Body Localization Using DoA Measurements from a Single Base Station. Electronics, 8(6), 622. doi:10.3390/electronics8060622Ahmad, T., Li, X., & Seet, B.-C. (2017). Parametric Loop Division for 3D Localization in Wireless Sensor Networks. Sensors, 17(7), 1697. doi:10.3390/s17071697Kaur, A., Kumar, P., & Gupta, G. P. (2019). A weighted centroid localization algorithm for randomly deployed wireless sensor networks. Journal of King Saud University - Computer and Information Sciences, 31(1), 82-91. doi:10.1016/j.jksuci.2017.01.007Khelifi, F., Bradai, A., Benslimane, A., Rawat, P., & Atri, M. (2018). A Survey of Localization Systems in Internet of Things. Mobile Networks and Applications, 24(3), 761-785. doi:10.1007/s11036-018-1090-3Sanchez-Iborra, R., G. Liaño, I., Simoes, C., Couñago, E., & Skarmeta, A. (2018). Tracking and Monitoring System Based on LoRa Technology for Lightweight Boats. Electronics, 8(1), 15. doi:10.3390/electronics8010015Sayed, A. H., Tarighat, A., & Khajehnouri, N. (2005). Network-based wireless location: challenges faced in developing techniques for accurate wireless location information. IEEE Signal Processing Magazine, 22(4), 24-40. doi:10.1109/msp.2005.1458275Maşazade, E., Ruixin Niu, Varshney, P. K., & Keskinoz, M. (2010). Energy Aware Iterative Source Localization for Wireless Sensor Networks. IEEE Transactions on Signal Processing, 58(9), 4824-4835. doi:10.1109/tsp.2010.2051433Yang, X., Kong, Q., & Xie, X. (2009). One-Dimensional Localization Algorithm Based on Signal Strength Ratio. International Journal of Distributed Sensor Networks, 5(1), 79-79. doi:10.1080/15501320802571822Xie, S., Wang, T., Hao, X., Yang, M., Zhu, Y., & Li, Y. (2019). Localization and Frequency Identification of Large-Range Wide-Band Electromagnetic Interference Sources in Electromagnetic Imaging System. Electronics, 8(5), 499. doi:10.3390/electronics8050499Zhu, X., Wu, X., & Chen, G. (2013). Relative localization for wireless sensor networks with linear topology. Computer Communications, 36(15-16), 1581-1591. doi:10.1016/j.comcom.2013.07.007Meng, W., Xiao, W., & Xie, L. (2011). An Efficient EM Algorithm for Energy-Based Multisource Localization in Wireless Sensor Networks. IEEE Transactions on Instrumentation and Measurement, 60(3), 1017-1027. doi:10.1109/tim.2010.2047035Lim, H., & Hou, J. C. (2009). Distributed localization for anisotropic sensor networks. ACM Transactions on Sensor Networks, 5(2), 1-26. doi:10.1145/1498915.1498917Xiaohong Sheng, & Yu-Hen Hu. (2005). Maximum likelihood multiple-source localization using acoustic energy measurements with wireless sensor networks. IEEE Transactions on Signal Processing, 53(1), 44-53. doi:10.1109/tsp.2004.838930Yun Wang, Xiaodong Wang, Demin Wang, & Agrawal, D. P. (2009). Range-Free Localization Using Expected Hop Progress in Wireless Sensor Networks. IEEE Transactions on Parallel and Distributed Systems, 20(10), 1540-1552. doi:10.1109/tpds.2008.239Huang, H., & Zheng, Y. R. (2018). Node localization with AoA assistance in multi-hop underwater sensor networks. Ad Hoc Networks, 78, 32-41. doi:10.1016/j.adhoc.2018.05.005Zàruba, G. V., Huber, M., Kamangar, F. A., & Chlamtac, I. (2006). Indoor location tracking using RSSI readings from a single Wi-Fi access point. Wireless Networks, 13(2), 221-235. doi:10.1007/s11276-006-5064-1Singh, M., & Khilar, P. M. (2015). An analytical geometric range free localization scheme based on mobile beacon points in wireless sensor network. Wireless Networks, 22(8), 2537-2550. doi:10.1007/s11276-015-1116-8Yiqiang Chen, Qiang Yang, Jie Yin, & Xiaoyong Chai. (2006). Power-efficient access-point selection for indoor location estimation. IEEE Transactions on Knowledge and Data Engineering, 18(7), 877-888. doi:10.1109/tkde.2006.112Alzoubi, K., Li, X.-Y., Wang, Y., Wan, P.-J., & Frieder, O. (2003). Geometric spanners for wireless ad hoc networks. IEEE Transactions on Parallel and Distributed Systems, 14(4), 408-421. doi:10.1109/tpds.2003.1195412Safa, H. (2014). A novel localization algorithm for large scale wireless sensor networks. Computer Communications, 45, 32-46. doi:10.1016/j.comcom.2014.03.020Kaemarungsi, K., & Krishnamurthy, P. (2012). Analysis of WLAN’s received signal strength indication for indoor location fingerprinting. Pervasive and Mobile Computing, 8(2), 292-316. doi:10.1016/j.pmcj.2011.09.003Patwari, N., Hero, A. O., Perkins, M., Correal, N. S., & O’Dea, R. J. (2003). Relative location estimation in wireless sensor networks. IEEE Transactions on Signal Processing, 51(8), 2137-2148. doi:10.1109/tsp.2003.814469Niculescu, D. (2003). Telecommunication Systems, 22(1/4), 267-280. doi:10.1023/a:1023403323460Mahyar, H., Hasheminezhad, R., Ghalebi K., E., Nazemian, A., Grosu, R., Movaghar, A., & Rabiee, H. R. (2018). Compressive sensing of high betweenness centrality nodes in networks. Physica A: Statistical Mechanics and its Applications, 497, 166-184. doi:10.1016/j.physa.2017.12.145Plets, D., Bastiaens, S., Martens, L., & Joseph, W. (2019). An Analysis of the Impact of LED Tilt on Visible Light Positioning Accuracy. Electronics, 8(4), 389. doi:10.3390/electronics8040389RSSI Datasethttps://github.com/pspachos/RSSI-DatasetAhmad, T., Li, X. J., & Seet, B.-C. (2019). Noise Reduction Scheme for Parametric Loop Division 3D Wireless Localization Algorithm Based on Extended Kalman Filtering. Journal of Sensor and Actuator Networks, 8(2), 24. doi:10.3390/jsan8020024Benson, S. J., Ye, Y., & Zhang, X. (2000). Solving Large-Scale Sparse Semidefinite Programs for Combinatorial Optimization. SIAM Journal on Optimization, 10(2), 443-461. doi:10.1137/s105262349732800

    Accurate range-free localization for anisotropic wireless sensor networks

    Get PDF
    Journal ArticlePosition information plays a pivotal role in wireless sensor network (WSN) applications and protocol/ algorithm design. In recent years, range-free localization algorithms have drawn much research attention due to their low cost and applicability to large-scale WSNs. However, the application of range-free localization algorithms is restricted because of their dramatic accuracy degradation in practical anisotropic WSNs, which is mainly caused by large error of distance estimation. Distance estimation in the existing range-free algorithms usually relies on a unified per hop length (PHL) metric between nodes. But the PHL between different nodes might be greatly different in anisotropic WSNs, resulting in large error in distance estimation. We find that, although the PHL between different nodes might be greatly different, it exhibits significant locality; that is, nearby nodes share a similar PHL to anchors that know their positions in advance. Based on the locality of the PHL, a novel distance estimation approach is proposed in this article. Theoretical analyses show that the error of distance estimation in the proposed approach is only one-fourth of that in the state-of-the-art pattern-driven scheme (PDS). An anchor selection algorithm is also devised to further improve localization accuracy by mitigating the negative effects from the anchors that are poorly distributed in geometry. By combining the locality-based distance estimation and the anchor selection, a range-free localization algorithm named Selective Multilateration (SM) is proposed. Simulation results demonstrate that SM achieves localization accuracy higher than 0.3r, where r is the communication radius of nodes. Compared to the state-of-the-art solution, SM improves the distance estimation accuracy by up to 57% and improves localization accuracy by up to 52% consequently.This work is partially supported by the National Science Foundation of China (61103203, 61173169, 61332004, and 61420106009), the Hong Kong RGC General Research Fund (PolyU 5106/11E), the International Science & Technology Cooperation Program of China (2013DFB10070), and the EU FP7 QUICK project (PIRSES-GA-2013-612652)

    LIS: Localization based on an intelligent distributed fuzzy system applied to a WSN

    Get PDF
    The localization of the sensor nodes is a fundamental problem in wireless sensor networks. There are a lot of different kinds of solutions in the literature. Some of them use external devices like GPS, while others use special hardware or implicit parameters in wireless communications. In applications like wildlife localization in a natural environment, where the power available and the weight are big restrictions, the use of hungry energy devices like GPS or hardware that add extra weight like mobile directional antenna is not a good solution. Due to these reasons it would be better to use the localization’s implicit characteristics in communications, such as connectivity, number of hops or RSSI. The measurement related to these parameters are currently integrated in most radio devices. These measurement techniques are based on the beacons’ transmissions between the devices. In the current study, a novel tracking distributed method, called LIS, for localization of the sensor nodes using moving devices in a network of static nodes, which have no additional hardware requirements is proposed. The position is obtained with the combination of two algorithms; one based on a local node using a fuzzy system to obtain a partial solution and the other based on a centralized method which merges all the partial solutions. The centralized algorithm is based on the calculation of the centroid of the partial solutions. Advantages of using fuzzy system versus the classical Centroid Localization (CL) algorithm without fuzzy preprocessing are compared with an ad hoc simulator made for testing localization algorithms. With this simulator, it is demonstrated that the proposed method obtains less localization errors and better accuracy than the centroid algorithm.Junta de Andalucía P07-TIC-0247

    A hybrid localization approach in 3D wireless sensor network

    Full text link
    Location information acquisition is crucial for many wireless sensor network (WSN) applications. While existing localization approaches mainly focus on 2D plane, the emerging 3D localization brings WSNs closer to reality with much enhanced accuracy. Two types of 3D localization algorithms are mainly used in localization application: the range-based localization and the range-free localization. The range-based localization algorithm has strict requirements on hardware and therefore is costly to implement in practice. The range-free localization algorithm reduces the hardware cost but at the expense of low localization accuracy. On addressing the shortage of both algorithms, in this paper, we develop a novel hybrid localization scheme, which utilizes the range-based attribute RSSI and the range-free attribute hopsize, to achieve accurate yet low-cost 3D localization. As anchor node deployment strategy plays an important role in improving the localization accuracy, an anchor node configuration scheme is also developed in this work by utilizing the MIS (maximal independent set) of a network. With proper anchor node configuration and propagation model selection, using simulations, we show that our proposed algorithm improves the localization accuracy by 38.9% compared with 3D DV-HOP and 52.7% compared with 3D centroid

    Data-Gathering and Aggregation Protocol for Networked Carrier Ad Hoc Networks: The Optimal and Heuristic Approach

    Get PDF
    In this chapter, we address the problem of data-gathering and aggregation (DGA) in navigation carrier ad hoc networks (NC-NET), in order to reduce energy consumption and enhance network scalability and lifetime. Several clustering algorithms have been presented for vehicle ad hoc network (VANET) and other mobile ad hoc network (MANET). However, DGA approach in harsh environments, in terms of long-range transmission, high dynamic topology and three-dimensional monitor region, is still an open issue. In this chapter, we propose a novel clustering-based DGA approach, namely, distributed multiple-weight data-gathering and aggregation (DMDG) protocol, to guarantee quality of service (QoS)-aware DGA for heterogeneous services in above harsh environments. Our approach is explored by the synthesis of three kernel features. First, the network model is addressed according to specific conditions of networked carrier ad hoc networks (NC-NET), and several performance indicators are selected. Second, a distributed multiple-weight data-gathering and aggregation protocol (DMDG) is proposed, which contains all-sided active clustering scheme and realizes long-range real-time communication by tactical data link under a time-division multiple access/carrier sense multiple access (TDMA/CSMA) channel sharing mechanism. Third, an analytical paradigm facilitating the most appropriate choice of the next relay is proposed. Experimental results have shown that DMDG scheme can balance the energy consumption and extend the network lifetime notably and outperform LEACH, PEACH and DEEC in terms of network lifetime and coverage rate, especially in sparse node density or anisotropic topologies

    Spatial networks with wireless applications

    Get PDF
    Many networks have nodes located in physical space, with links more common between closely spaced pairs of nodes. For example, the nodes could be wireless devices and links communication channels in a wireless mesh network. We describe recent work involving such networks, considering effects due to the geometry (convex,non-convex, and fractal), node distribution, distance-dependent link probability, mobility, directivity and interference.Comment: Review article- an amended version with a new title from the origina
    corecore