226 research outputs found

    Physical limitation of range-domain secrecy using frequency diverse arrays

    Get PDF

    Advanced 3-D Ultrasound Imaging: 3-D Synthetic Aperture Imaging using Fully Addressed and Row-Column Addressed 2-D Transducer Arrays.

    Get PDF

    Improving the Image Quality of Synthetic Transmit Aperture Ultrasound Images - Achieving Real-Time In-Vivo Imaging

    Get PDF

    An investigation of a frequency diverse array

    Get PDF
    This thesis presents a novel concept for focusing an antenna beam pattern as a function of range, time, and angle. In conventional phased arrays, beam steering is achieved by applying a linear phase progression across the aperture. This thesis shows that by applying an additional linear frequency shift across the elements, a new term is generated which results in a scan angle that varies with range in the far-field. Moreover, the antenna pattern is shown to scan in range and angle as a function of time. These properties result in more flexible beam scan options for phased array antennas than traditional phase shifter implementations. The thesis subsequently goes on to investigate this phenomenon via full scale experimentation, and explores a number of aspects of applying frequency diversity spatially across array antennas. This new form of frequency diverse array may have applications to multipath mitigation, where a radio signal takes two or more routes between the transmitter and receiver due to scattering from natural and man-made objects. Since the interfering signals arrive from more than one direction, the range-dependent and auto-scanning properties of the frequency diverse array beam may be useful to isolate and suppress the interference. The frequency diverse array may also have applications to wideband array steering, in lieu of true time delay solutions which are often used to compensate for linear phase progression with frequency across an array, and to sonar, where the speed of propagation results in large percentage bandwidth, creating similar wideband array effects. The frequency diverse array is also a stepping stone to more sophisticated joint antenna and waveform design for the creation of new radar modes, such as simultaneous multi-mode operation, for example, enabling joint synthetic aperture radar and ground moving target indication

    Coherent FDA Receiver and Joint Range-Space-Time Processing

    Full text link
    When a target is masked by mainlobe clutter with the same Doppler frequency, it is difficult for conventional airborne radars to determine whether a target is present in a given observation using regular space-time adaptive processing techniques. Different from phased-array and multiple-input multiple-output (MIMO) arrays, frequency diverse arrays (FDAs) employ frequency offsets across the array elements, delivering additional range-controllable degrees of freedom, potentially enabling suppression for this kind of clutter. However, the reception of coherent FDA systems employing small frequency offsets and achieving high transmit gain can be further improved. To this end, this work proposes an coherent airborne FDA radar receiver that explores the orthogonality of echo signals in the Doppler domain, allowing a joint space-time processing module to be deployed to separate the aliased returns. The resulting range-space-time adaptive processing allows for a preferable detection performance for coherent airborne FDA radars as compared to current alternative techniques.Comment: 11 pages, 9 figure

    Synthetic Aperture Beamforming in Ultrasound using Moving Arrays.

    Get PDF

    Portable Ultrasound Imaging

    Get PDF
    This PhD project investigates hardware strategies and imaging methods for hand-held ultrasound systems. The overall idea is to use a wireless ultrasound probe linked to general-purpose mobile devices for the processing and visualization. The approach has the potential to reduce the upfront costs of the ultrasound system and, consequently, to allow for a wide-scale utilization of diagnostic ultrasound in any medical specialties and out of the radiology department. The first part of the contribution deals with the study of hardware solutions for the reduction of the system complexity. Analog and digital beamforming strategies are simulated from a system-level perspective. The quality of the B-mode image is evaluated and the minimum specifications are derived for the design of a portable probe with integrated electronics in-handle. The system is based on a synthetic aperture sequential beamforming approach that allows to significantly reduce the data rate between the probe and processing unit. The second part investigates the feasibility of vector flow imaging in a hand-held ultrasound system. Vector flow imaging overcomes the limitations of conventional imaging methods in terms of flow angle compensation. Furthermore, high frame rate can be obtained by using synthetic aperture focusing techniques. A method is developed combining synthetic aperture sequential beamforming and directional transverse oscillation to achieve the wireless transmission of the data along with a relatively inexpensive 2-D velocity estimation. The performance of the method is thoroughly assessed through simulations and measurements, and in vivo investigations are carried out to show its potential in presence of complex flow dynamics. A sufficient frame rate is achieved to allow for the visualization of vortices in the carotid bifurcation. Furthermore, the method is implemented on a commercially available tablet to evaluate the real-time processing performance in the built-in GPU with concurrent wireless transmission of the data. Based on the demonstrations in this thesis, a flexible framework can be implemented with performance that can be scaled to the needs of the user and according to the computing resources available. The integration of high-frame-rate vector flow imaging in a hand-held ultrasound scanner, in addition, has the potential to improve the operator’s workflow and opens the way to new possibilities in the clinical practice

    Waveform Diversity and Range-Coupled Adaptive Radar Signal Processing

    Get PDF
    Waveform diversity may offer several benefits to radar systems though often at the cost of reduced sensitivity. Multi-dimensional processing schemes are known to offer many degrees of freedom, which can be exploited to suppress the ambiguity inherent to pulse compression, array processing, and Doppler frequency estimation. Spatial waveform diversity can be achieved by transmitting different but correlated waveforms from each element of an antenna array. A simple yet effective scheme is employed to transmit different waveforms in different spatial directions. A new reiterative minimum mean squared error approach entitled Space-Range Adaptive Processing, which adapts simultaneously in range and angle, is derived and shown in simulation to offer enhanced performance when spatial waveform diversity is employed relative to both conventional matched filtering and sequentially adapting in angle and then range. The same mathematical framework is utilized to develop Time-Range Adaptive Processing (TRAP) algorithm which is capable of simultaneously adapting in Doppler frequency and range. TRAP is useful when pulse-to-pulse changing of the center frequency or waveform coding is used to achieve enhanced range resolution or unambiguous ranging, respectively. The inherent computational complexity of the new multi-dimensional algorithms is addressed by segmenting the full-dimension cost functions, yielding a reduced-dimensional variants of each. Finally, a non-adaptive approach based on the multi-dimensional TRAP signal model is utilized to develop an efficient clutter cancellation technique capable of suppressing multiple range intervals of clutter when waveform diversity is applied to pulse-Doppler radar
    • 

    corecore