38 research outputs found

    Design Optimization of a Speed Reducer Using Deterministic Techniques

    Get PDF
    The optimal design problem of minimizing the total weight of a speed reducer under constraints is a generalized geometric programming problem. Since the metaheuristic approaches cannot guarantee to find the global optimum of a generalized geometric programming problem, this paper applies an efficient deterministic approach to globally solve speed reducer design problems. The original problem is converted by variable transformations and piecewise linearization techniques. The reformulated problem is a convex mixed-integer nonlinear programming problem solvable to reach an approximate global solution within an acceptable error. Experiment results from solving a practical speed reducer design problem indicate that this study obtains a better solution comparing with the other existing methods

    Global method for a class of operation optimization problem in steel rolling systems

    Get PDF
    Many steel products are produced in hot or cold rolling lines with multiple stands. The steel material becomes thinner after being rolled at each stand. Steady-state parameters for controlling the rolling line need to be set so as to satisfy the final product specifications and minimize the total energy consumption. This paper develops a generalized geometric programming model for this setting problem and proposes a global method for solving it. The model can be expressed with a linear objective function and a set of constraints including nonconvex ones. Through constructing lower bounds of some components, the constraints can be converted to convex ones approximately. A sequential approximation method is proposed in a gradually reduced interval to improve accuracy and efficiency. However, the resulting convex programming model in each iteration is still complicated. To reduce the power, it is transformed into a second-order cone programming (SOCP) model and solved using alternating direction method of multipliers (ADMM). The effectiveness of the global method is tested using real data from a hot-rolling line with seven stands. The results demonstrate that the proposed global method solves the problem effectively and reduces the energy consumption

    Optimization-based design of fault-tolerant avionics

    Get PDF
    This dissertation considers the problem of improving the self-consciousness for avionic systems using numerical optimization techniques, emphasizing UAV applications. This self-consciousness implies a sense of awareness for oneself to make a reliable decision on some crucial aspects. In the context of the avionics or aerospace industry, those aspects are SWaP-C as well as safety and reliability. The decision-making processes to optimize these aspects, which are the main contributions of this work, are presented. In addition, implementation on various types of applications related to avionics and UAV are also provided. The first half of this thesis lays out the background of avionics development ranging from a mechanical gyroscope to a current state-of-the-art electronics system. The relevant mathematics regarding convex optimization and its algorithms, which will be used for formulating this self-consciousness problem, are also provided. The latter half presents two problem formulations for redundancy design automation and reconfigurable middleware. The first formulation focuses on the minimization of SWaP-C while satisfying safety and reliability requirements. The other one aims to maximize the system safety and reliability by introducing a fault-tolerant capability via the task scheduler of middleware or RTOS. The usage of these two formulations is shown by four aerospace applications---reconfigurable multicore avionics, a SITL simulation of a UAV GNC system, a modular drone, and a HITL simulation of a fault-tolerant distributed engine control architecture.Ph.D

    Bridging the gap : an optimization-based framework for fast, simultaneous circuit & system design space exploration

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 107-110).Design of modern mixed signal integrated circuits is becoming increasingly difficult. Continued MOSFET scaling is approaching the global power dissipation limits while increasing transistor variability, thus requiring careful allocation of power and area resources to achieve increasingly more aggressive performance specifications. In this tightly constrained environment traditional iterative system-to-circuit redesign loop, is becoming inefficient. With complex system architectures and circuit specifications approaching technological limits of the process employed, the designers have less room to margin for the overhead of strict system and circuit design interdependencies. Severely constrained modern mixed IC design can take many iterations to converge in such a design flow. This is an expensive and time consuming process. The situation is particularly acute in high-speed links. As an important building block of many systems (high speed I/O, on-chip communication, ...) power efficiency and area footprint are of utmost importance. Design of these systems is challenging in both system and circuit domain. On one hand system architectures are becoming increasingly complex to provide necessary performance increase. On the other, circuit implementation of these increasingly complicated systems is difficult to achieve under tight power and area budget. To bridge this gap between system and circuit design, we formulate a circuit-to-system optimization-driven framework. It is an equation-based description, powered by a human designer. Provided with equation-based model we use fast optimization tools to quickly scout the available design space. Presence of a designer in the flow is invaluable resource enabling significant saving by simplifying the models to capture only the relevant information and constraining the search space to areas where meaningful solutions might be expected to be found.(cont) Thus, the computational effort overhead that plagues the simulation-based design space exploration and design optimization is greatly reduced. The flow is powered by a signomial optimization engine. The key challenge is to bring, from the modeling point of view, very different problems such as circuit design and system design into the realm of an optimization engine that can solve them jointly, thus breaking the re-design loop or at least cutting it shorter. Relying on signomial programming is necessary in order to accurately model all the necessary phenomenons that arise in electrical circuits and at system level. For example, defining regions of operation of transistors under polarization conditions can not be modeled accurately with simpler type of equations. Similarly, calculating the effect of filtering to a signal also requires possibility to handle signomial equations. Thus, signomial programming is necessary yet not fully explored and finding suitable formulation might take some experimenting as we will see in this thesis. Signomial programming, as a general non-convex optimization problem, is still an active research area. Most of the solutions proposed so far involve local convexification of the problem in addition to branch & bound type of search. Furthermore, most of the non-convex problems are solved for one particular system of equations, and general methodology that is reliable and efficient is not known. Thus, a big part the work to be presented in this thesis is detailing how to construct a system formulation that the optimization engine can solve efficiently and reliably. We tested different formulations and their performance measured in terms of parsing and solving speed and accuracy. From these tests we motivate and explain how a series of transformations we introduce improve our formulation and arrive to a well-behaved and reliable form. We show how to apply our design flow in high-speed link design.(cont) By restructuring the traditional design flow we derive system and circuit abstractions. These sub-problems are interfaced through a set of well defined interface variables, which enables code level separation of problem descriptions, thus building a modular and easy to read and maintain system and circuit model. Finally we develop a set of scripts to automate formulating parametrized system level description. We explain how our transformations influence the speed of this process as well as the size of the model produced.by Ranko Sredojević.S.M

    Identification of critical combination of vulnerable links in transportation networks – a global optimisation approach

    Get PDF
    This paper presents a global optimisation framework for identifying the most critical combination of vulnerable links in a transportation network. The problem is formulated as a mixed-integer non-linear programme with equilibrium constraints, aiming to determine the combination of links whose deterioration would induce the most increase in total travel cost in the network. A global optimisation solution method applying a piecewise linearisation approach and range-reduction technique is developed to solve the model. From the numerical results, it is interesting and counterintuitive to note that the set of most vulnerable links when simultaneous multiple-link failure occurs is not simply the combination of the most vulnerable links with single-link failure, and the links in the critical combination of vulnerable links are not necessarily connected or even in the neighbourhood of each other. The numerical results also show that the ranking of vulnerable links will be significantly affected by certain input parameters

    International Conference on Continuous Optimization (ICCOPT) 2019 Conference Book

    Get PDF
    The Sixth International Conference on Continuous Optimization took place on the campus of the Technical University of Berlin, August 3-8, 2019. The ICCOPT is a flagship conference of the Mathematical Optimization Society (MOS), organized every three years. ICCOPT 2019 was hosted by the Weierstrass Institute for Applied Analysis and Stochastics (WIAS) Berlin. It included a Summer School and a Conference with a series of plenary and semi-plenary talks, organized and contributed sessions, and poster sessions. This book comprises the full conference program. It contains, in particular, the scientific program in survey style as well as with all details, and information on the social program, the venue, special meetings, and more

    Generation Expansion Planning with Large Amounts of Wind Power via Decision-Dependent Stochastic Programming

    Get PDF
    Power generation expansion planning needs to deal with future uncertainties carefully, given that the invested generation assets will be in operation for a long time. Many stochastic programming models have been proposed to tackle this challenge. However, most previous works assume predetermined future uncertainties (i.e., fixed random outcomes with given probabilities). In several recent studies of generation assets\u27 planning (e.g., thermal versus renewable), new findings show that the investment decisions could affect the future uncertainties as well. To this end, this paper proposes a multistage decision-dependent stochastic optimization model for long-term large-scale generation expansion planning, where large amounts of wind power are involved. In the decision-dependent model, the future uncertainties are not only affecting but also affected by the current decisions. In particular, the probability distribution function is determined by not only input parameters but also decision variables. To deal with the nonlinear constraints in our model, a quasi-exact solution approach is then introduced to reformulate the multistage stochastic investment model to a mixed-integer linear programming model. The wind penetration, investment decisions, and the optimality of the decision-dependent model are evaluated in a series of multistage case studies. The results show that the proposed decision-dependent model provides effective optimization solutions for long-term generation expansion planning
    corecore