520,532 research outputs found

    Crossing the Logarithmic Barrier for Dynamic Boolean Data Structure Lower Bounds

    Full text link
    This paper proves the first super-logarithmic lower bounds on the cell probe complexity of dynamic boolean (a.k.a. decision) data structure problems, a long-standing milestone in data structure lower bounds. We introduce a new method for proving dynamic cell probe lower bounds and use it to prove a Ω~(log1.5n)\tilde{\Omega}(\log^{1.5} n) lower bound on the operational time of a wide range of boolean data structure problems, most notably, on the query time of dynamic range counting over F2\mathbb{F}_2 ([Pat07]). Proving an ω(lgn)\omega(\lg n) lower bound for this problem was explicitly posed as one of five important open problems in the late Mihai P\v{a}tra\c{s}cu's obituary [Tho13]. This result also implies the first ω(lgn)\omega(\lg n) lower bound for the classical 2D range counting problem, one of the most fundamental data structure problems in computational geometry and spatial databases. We derive similar lower bounds for boolean versions of dynamic polynomial evaluation and 2D rectangle stabbing, and for the (non-boolean) problems of range selection and range median. Our technical centerpiece is a new way of "weakly" simulating dynamic data structures using efficient one-way communication protocols with small advantage over random guessing. This simulation involves a surprising excursion to low-degree (Chebychev) polynomials which may be of independent interest, and offers an entirely new algorithmic angle on the "cell sampling" method of Panigrahy et al. [PTW10]

    Efficient Method for Computing Lower Bounds on the pp-radius of Switched Linear Systems

    Full text link
    This paper proposes lower bounds on a quantity called LpL^p-norm joint spectral radius, or in short, pp-radius, of a finite set of matrices. Despite its wide range of applications to, for example, stability analysis of switched linear systems and the equilibrium analysis of switched linear economical models, algorithms for computing the pp-radius are only available in a very limited number of particular cases. The proposed lower bounds are given as the spectral radius of an average of the given matrices weighted via Kronecker products and do not place any requirements on the set of matrices. We show that the proposed lower bounds theoretically extend and also can practically improve the existing lower bounds. A Markovian extension of the proposed lower bounds is also presented

    Rigorous Bounds on the Free Energy of Electron-Phonon Models

    Get PDF
    We present a collection of rigorous upper and lower bounds to the free energy of electron-phonon models with linear electron-phonon interaction. These bounds are used to compare different variational approaches. It is shown rigorously that the ground states corresponding to the sharpest bounds do not exhibit Off-Diagonal Long-Range Order in the two-particle density matrix.

    Towards Tight Lower Bounds for Range Reporting on the RAM

    Full text link
    In the orthogonal range reporting problem, we are to preprocess a set of nn points with integer coordinates on a U×UU \times U grid. The goal is to support reporting all kk points inside an axis-aligned query rectangle. This is one of the most fundamental data structure problems in databases and computational geometry. Despite the importance of the problem its complexity remains unresolved in the word-RAM. On the upper bound side, three best tradeoffs exists: (1.) Query time O(lglgn+k)O(\lg \lg n + k) with O(nlgεn)O(nlg^{\varepsilon}n) words of space for any constant ε>0\varepsilon>0. (2.) Query time O((1+k)lglgn)O((1 + k) \lg \lg n) with O(nlglgn)O(n \lg \lg n) words of space. (3.) Query time O((1+k)lgεn)O((1+k)\lg^{\varepsilon} n) with optimal O(n)O(n) words of space. However, the only known query time lower bound is Ω(loglogn+k)\Omega(\log \log n +k), even for linear space data structures. All three current best upper bound tradeoffs are derived by reducing range reporting to a ball-inheritance problem. Ball-inheritance is a problem that essentially encapsulates all previous attempts at solving range reporting in the word-RAM. In this paper we make progress towards closing the gap between the upper and lower bounds for range reporting by proving cell probe lower bounds for ball-inheritance. Our lower bounds are tight for a large range of parameters, excluding any further progress for range reporting using the ball-inheritance reduction

    Best possible rates of distribution of dense lattice orbits in homogeneous spaces

    Get PDF
    The present paper establishes upper and lower bounds on the speed of approximation in a wide range of natural Diophantine approximation problems. The upper and lower bounds coincide in many cases, giving rise to optimal results in Diophantine approximation which were inaccessible previously. Our approach proceeds by establishing, more generally, upper and lower bounds for the rate of distribution of dense orbits of a lattice subgroup Γ\Gamma in a connected Lie (or algebraic) group GG, acting on suitable homogeneous spaces G/HG/H. The upper bound is derived using a quantitative duality principle for homogeneous spaces, reducing it to a rate of convergence in the mean ergodic theorem for a family of averaging operators supported on HH and acting on G/ΓG/\Gamma. In particular, the quality of the upper bound on the rate of distribution we obtain is determined explicitly by the spectrum of HH in the automorphic representation on L2(ΓG)L^2(\Gamma\setminus G). We show that the rate is best possible when the representation in question is tempered, and show that the latter condition holds in a wide range of examples
    corecore