11,886 research outputs found

    3D Geometric Analysis of Tubular Objects based on Surface Normal Accumulation

    Get PDF
    This paper proposes a simple and efficient method for the reconstruction and extraction of geometric parameters from 3D tubular objects. Our method constructs an image that accumulates surface normal information, then peaks within this image are located by tracking. Finally, the positions of these are optimized to lie precisely on the tubular shape centerline. This method is very versatile, and is able to process various input data types like full or partial mesh acquired from 3D laser scans, 3D height map or discrete volumetric images. The proposed algorithm is simple to implement, contains few parameters and can be computed in linear time with respect to the number of surface faces. Since the extracted tube centerline is accurate, we are able to decompose the tube into rectilinear parts and torus-like parts. This is done with a new linear time 3D torus detection algorithm, which follows the same principle of a previous work on 2D arc circle recognition. Detailed experiments show the versatility, accuracy and robustness of our new method.Comment: in 18th International Conference on Image Analysis and Processing, Sep 2015, Genova, Italy. 201

    Design of automatic vision-based inspection system for solder joint segmentation

    Get PDF
    Purpose: Computer vision has been widely used in the inspection of electronic components. This paper proposes a computer vision system for the automatic detection, localisation, and segmentation of solder joints on Printed Circuit Boards (PCBs) under different illumination conditions. Design/methodology/approach: An illumination normalization approach is applied to an image, which can effectively and efficiently eliminate the effect of uneven illumination while keeping the properties of the processed image the same as in the corresponding image under normal lighting conditions. Consequently special lighting and instrumental setup can be reduced in order to detect solder joints. These normalised images are insensitive to illumination variations and are used for the subsequent solder joint detection stages. In the segmentation approach, the PCB image is transformed from an RGB color space to a YIQ color space for the effective detection of solder joints from the background. Findings: The segmentation results show that the proposed approach improves the performance significantly for images under varying illumination conditions. Research limitations/implications: This paper proposes a front-end system for the automatic detection, localisation, and segmentation of solder joint defects. Further research is required to complete the full system including the classification of solder joint defects. Practical implications: The methodology presented in this paper can be an effective method to reduce cost and improve quality in production of PCBs in the manufacturing industry. Originality/value: This research proposes the automatic location, identification and segmentation of solder joints under different illumination conditions

    Structured Light-Based 3D Reconstruction System for Plants.

    Get PDF
    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance

    Image segmentation with adaptive region growing based on a polynomial surface model

    Get PDF
    A new method for segmenting intensity images into smooth surface segments is presented. The main idea is to divide the image into flat, planar, convex, concave, and saddle patches that coincide as well as possible with meaningful object features in the image. Therefore, we propose an adaptive region growing algorithm based on low-degree polynomial fitting. The algorithm uses a new adaptive thresholding technique with the L∞ fitting cost as a segmentation criterion. The polynomial degree and the fitting error are automatically adapted during the region growing process. The main contribution is that the algorithm detects outliers and edges, distinguishes between strong and smooth intensity transitions and finds surface segments that are bent in a certain way. As a result, the surface segments corresponding to meaningful object features and the contours separating the surface segments coincide with real-image object edges. Moreover, the curvature-based surface shape information facilitates many tasks in image analysis, such as object recognition performed on the polynomial representation. The polynomial representation provides good image approximation while preserving all the necessary details of the objects in the reconstructed images. The method outperforms existing techniques when segmenting images of objects with diffuse reflecting surfaces

    Fusion of aerial images and sensor data from a ground vehicle for improved semantic mapping

    Get PDF
    This work investigates the use of semantic information to link ground level occupancy maps and aerial images. A ground level semantic map, which shows open ground and indicates the probability of cells being occupied by walls of buildings, is obtained by a mobile robot equipped with an omnidirectional camera, GPS and a laser range finder. This semantic information is used for local and global segmentation of an aerial image. The result is a map where the semantic information has been extended beyond the range of the robot sensors and predicts where the mobile robot can find buildings and potentially driveable ground

    A Minimalist Approach to Type-Agnostic Detection of Quadrics in Point Clouds

    Get PDF
    This paper proposes a segmentation-free, automatic and efficient procedure to detect general geometric quadric forms in point clouds, where clutter and occlusions are inevitable. Our everyday world is dominated by man-made objects which are designed using 3D primitives (such as planes, cones, spheres, cylinders, etc.). These objects are also omnipresent in industrial environments. This gives rise to the possibility of abstracting 3D scenes through primitives, thereby positions these geometric forms as an integral part of perception and high level 3D scene understanding. As opposed to state-of-the-art, where a tailored algorithm treats each primitive type separately, we propose to encapsulate all types in a single robust detection procedure. At the center of our approach lies a closed form 3D quadric fit, operating in both primal & dual spaces and requiring as low as 4 oriented-points. Around this fit, we design a novel, local null-space voting strategy to reduce the 4-point case to 3. Voting is coupled with the famous RANSAC and makes our algorithm orders of magnitude faster than its conventional counterparts. This is the first method capable of performing a generic cross-type multi-object primitive detection in difficult scenes. Results on synthetic and real datasets support the validity of our method.Comment: Accepted for publication at CVPR 201

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Enhancment of dense urban digital surface models from VHR optical satellite stereo data by pre-segmentation and object detection

    Get PDF
    The generation of digital surface models (DSM) of urban areas from very high resolution (VHR) stereo satellite imagery requires advanced methods. In the classical approach of DSM generation from stereo satellite imagery, interest points are extracted and correlated between the stereo mates using an area based matching followed by a least-squares sub-pixel refinement step. After a region growing the 3D point list is triangulated to the resulting DSM. In urban areas this approach fails due to the size of the correlation window, which smoothes out the usual steep edges of buildings. Also missing correlations as for partly – in one or both of the images – occluded areas will simply be interpolated in the triangulation step. So an urban DSM generated with the classical approach results in a very smooth DSM with missing steep walls, narrow streets and courtyards. To overcome these problems algorithms from computer vision are introduced and adopted to satellite imagery. These algorithms do not work using local optimisation like the area-based matching but try to optimize a (semi-)global cost function. Analysis shows that dynamic programming approaches based on epipolar images like dynamic line warping or semiglobal matching yield the best results according to accuracy and processing time. These algorithms can also detect occlusions – areas not visible in one or both of the stereo images. Beside these also the time and memory consuming step of handling and triangulating large point lists can be omitted due to the direct operation on epipolar images and direct generation of a so called disparity image fitting exactly on the first of the stereo images. This disparity image – representing already a sort of a dense DSM – contains the distances measured in pixels in the epipolar direction (or a no-data value for a detected occlusion) for each pixel in the image. Despite the global optimization of the cost function many outliers, mismatches and erroneously detected occlusions remain, especially if only one stereo pair is available. To enhance these dense DSM – the disparity image – a pre-segmentation approach is presented in this paper. Since the disparity image is fitting exactly on the first of the two stereo partners (beforehand transformed to epipolar geometry) a direct correlation between image pixels and derived heights (the disparities) exist. This feature of the disparity image is exploited to integrate additional knowledge from the image into the DSM. This is done by segmenting the stereo image, transferring the segmentation information to the DSM and performing a statistical analysis on each of the created DSM segments. Based on this analysis and spectral information a coarse object detection and classification can be performed and in turn the DSM can be enhanced. After the description of the proposed method some results are shown and discussed
    • 

    corecore