1,939 research outputs found

    Smart objects as building blocks for the internet of things

    Get PDF
    The combination of the Internet and emerging technologies such as nearfield communications, real-time localization, and embedded sensors lets us transform everyday objects into smart objects that can understand and react to their environment. Such objects are building blocks for the Internet of Things and enable novel computing applications. As a step toward design and architectural principles for smart objects, the authors introduce a hierarchy of architectures with increasing levels of real-world awareness and interactivity. In particular, they describe activity-, policy-, and process-aware smart objects and demonstrate how the respective architectural abstractions support increasingly complex application

    Exploring the Design of Pay-Per-Use Objects in the Construction Domain

    Get PDF
    Equipment used in the construction domain is often hired in order to reduce cost and maintenance overhead. The cost of hire is dependent on the time period involved and does not take into account the actual use equipment has received. This paper presents our initial investigation into how physical objects augmented with sensing and communication technologies can measure use in order to enable new pay-per-use payment models for equipment hire. We also explore user interaction with pay-per-use objects via mobile devices. The user interactions that take place within our prototype scenario range from simple information access to transactions involving multiple users. This paper presents the design, implementation and evaluation of a prototype pay-per-use system motivated by a real world equipment hire scenario. We also provide insights into the various challenges introduced by supporting a pay-per-use model, including data storage and data security in addition to user interaction issues

    Real-time auditing of domotic robotic cleaners

    No full text
    Domotic Robotic Cleaners are autonomous devices that are designed to operate almost entirely unattended. In this paper we propose a system that aims to evaluate the performance of such devices by analysis of their trails. This concept of trails is central to our approach, and it encompasses the traditional notion of a path followed by a robot between arbitrary numbers of points in a physical space. We enrich trails with context-specific metadata, such as proximity to landmarks, frequency of visitation, duration, etc. We then process the trail data collected by the robots, we store it an appropriate data structure and derive useful statistical information from the raw data. The usefulness of the derived information is twofold: it can primarily be used to audit the performance of the robotic cleaner –for example, to give an accurate indication of how well a space is covered (cleaned). And secondarily information can be analyzed in real-time to affect the behavior of specific robots – for example to notify a robot that specific areas have not been adequately covered. Towards our first goal, we have developed and evaluated a prototype of our system that uses a particular commercially available robotic cleaner. Our implementation deploys adhoc wireless local networking capability available through a surrogate device mounted onto this commodity robot; the device senses relative proximity to a grid of RFID tags attached to the floor. We report on the performance of this system in experiments conducted in a laboratory environment, which highlight the advantages and limitations of our approach

    The value of handhelds in smart environments

    Get PDF
    The severe resource restrictions of computer-augmented everyday artifacts imply substantial problems for the design of applications in smart environments. Some of these problems can be overcome by exploiting the resources, I/O interfaces, and computing capabilities of nearby mobile devices in an ad-hoc fashion. We identify the means by which smart objects can make use of handheld devices such as PDAs and mobile phones, and derive the following major roles of handhelds in smart environments: (1) mobile infrastructure access point; (2) user interface; (3) remote sensor; (4) mobile storage medium; (5) remote resource provider; and (6) weak user identifier. We present concrete applications that illustrate these roles, and describe how handhelds can serve as mobile mediators between computer-augmented everyday artifacts, their users, and background infrastructure services. The presented applications include a remote interaction scenario, a smart medicine cabinet, and an inventory monitoring applicatio

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this field. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research

    Supplementing an AD-HOC Wireless Network Routing Protocol with Radio Frequency Identification (RFID) Tags

    Get PDF
    Wireless sensor networks (WSNs) have a broad and varied range of applications, yet all of these are limited by the resources available to the sensor nodes that make up the WSN. The most significant resource is energy. A WSN may be deployed to an inhospitable or unreachable area, leaving it with a non-replenishable power source. This research examines a way of reducing energy consumption by augmenting the nodes with radio frequency identification (RFID) tags that contain routing information. It was expected that RFID tags would reduce the network throughput, the ad hoc on-demand distance vector (AODV) routing traffic sent, and the amount of energy consumed. However, the results show that RFID tags have little effect on the network throughput or the AODV routing traffic sent. They also increase ETE delays in sparse networks as well as the amount of energy consumed in both sparse and dense networks. Furthermore, there was no statistical difference in the amount of user data throughput received. The density of the network is shown to have an effect on the variation of the data but the trends are the same for both sparse and dense networks. This counter-intuitive result is explained, and conditions for such a scheme to be effective are discussed
    corecore