61 research outputs found

    Towards more Dependable Verification of Mixed-Signal Systems

    Get PDF
    The verification of complex mixed-signal systems is a challenge, especially considering the impact of parameter variations. Besides the established approaches like Monte-Carlo or Corner-Case simulation, a novel semi-symbolic approach emerged in recent years. In this approach, parameter variations and tolerances are maintained as symbolic ranges during numerical simulation runs by using affine arithmetic. Maintaining parameter variations and tolerances in a symbolic way significantly increases verification coverage. In the following we give a brief introduction and an overview of research on semi-symbolic simulation of both circuits and systems and discuss possible application for system level verification and optimization

    Techniques for the formal verification of analog and mixed- signal designs

    Get PDF
    Embedded systems are becoming a core technology in a growing range of electronic devices. Cornerstones of embedded systems are analog and mixed signal (AMS) designs, which are integrated circuits required at the interfaces with the real world environment. The verification of AMS designs is concerned with the assurance of correct functionality, in addition to checking whether an AMS design is robust with respect to different types of inaccuracies like parameter tolerances, nonlinearities, etc. The verification framework described in this thesis is composed of two proposed methodologies each concerned with a class of AMS designs, i.e., continuous-time AMS designs and discrete-time AMS designs. The common idea behind both methodologies is built on top of Bounded Model Checking (BMC) algorithms. In BMC, we search for a counter-example for a property verified against the design model for bounded number of verification steps. If a concrete counter-example is found, then the verification is complete and reports a failure, otherwise, we need to increment the number of steps until property validation is achieved. In general, the verification is not complete because of limitations in time and memory needed for the verification. To alleviate this problem, we observed that under certain conditions and for some classes of specification properties, the verification can be complete if we complement the BMC with other methods such as abstraction and constraint based verification methods. To test and validate the proposed approaches, we developed a prototype implementation in Mathematica and we targeted analog and mixed signal systems, like oscillator circuits, switched capacitor based designs, Delta-Sigma modulators for our initial tests of this approach

    Formale Verifikationsmethodiken fĂŒr nichtlineare analoge Schaltungen

    Get PDF
    The objective of this thesis is to develop new methodologies for formal verification of nonlinear analog circuits. Therefore, new approaches to discrete modeling of analog circuits, specification of analog circuit properties and formal verification algorithms are introduced. Formal approaches to verification of analog circuits are not yet introduced into industrial design flows and still subject to research. Formal verification proves specification conformance for all possible input conditions and all possible internal states of a circuit. Automatically proving that a model of the circuit satisfies a declarative machine-readable property specification is referred to as model checking. Equivalence checking proves the equivalence of two circuit implementations. Starting from the state of the art in modeling analog circuits for simulation-based verification, discrete modeling of analog circuits for state space-based formal verification methodologies is motivated in this thesis. In order to improve the discrete modeling of analog circuits, a new trajectory-directed partitioning algorithm was developed in the scope of this thesis. This new approach determines the partitioning of the state space parallel or orthogonal to the trajectories of the state space dynamics. Therewith, a high accuracy of the successor relation is achieved in combination with a lower number of states necessary for a discrete model of equal accuracy compared to the state-of-the-art hyperbox-approach. The mapping of the partitioning to a discrete analog transition structure (DATS) enables the application of formal verification algorithms. By analyzing digital specification concepts and the existing approaches to analog property specification, the requirements for a new specification language for analog properties have been discussed in this thesis. On the one hand, it shall meet the requirements for formal specification of verification approaches applied to DATS models. On the other hand, the language syntax shall be oriented on natural language phrases. By synthesis of these requirements, the analog specification language (ASL) was developed in the scope of this thesis. The verification algorithms for model checking, that were developed in combination with ASL for application to DATS models generated with the new trajectory-directed approach, offer a significant enhancement compared to the state of the art. In order to prepare a transition of signal-based to state space-based verification methodologies, an approach to transfer transient simulation results from non-formal test bench simulation flows into a partial state space representation in form of a DATS has been developed in the scope of this thesis. As has been demonstrated by examples, the same ASL specification that was developed for formal model checking on complete discrete models could be evaluated without modifications on transient simulation waveforms. An approach to counterexample generation for the formal ASL model checking methodology offers to generate transition sequences from a defined starting state to a specification-violating state for inspection in transient simulation environments. Based on this counterexample generation, a new formal verification methodology using complete state space-covering input stimuli was developed. By conducting a transient simulation with these complete state space-covering input stimuli, the circuit adopts every state and transition that were visited during stimulus generation. An alternative formal verification methodology is given by retransferring the transient simulation responses to a DATS model and by applying the ASL verification algorithms in combination with an ASL property specification. Moreover, the complete state space-covering input stimuli can be applied to develop a formal equivalence checking methodology. Therewith, the equivalence of two implementations can be proven for every inner state of both systems by comparing the transient simulation responses to the complete-coverage stimuli of both circuits. In order to visually inspect the results of the newly introduced verification methodologies, an approach to dynamic state space visualization using multi-parallel particle simulation was developed. Due to the particles being randomly distributed over the complete state space and moving corresponding to the state space dynamics, another perspective to the system's behavior is provided that covers the state space and hence offers formal results. The prototypic implementations of the formal verification methodologies developed in the scope of this thesis have been applied to several example circuits. The acquired results for the new approaches to discrete modeling, specification and verification algorithms all demonstrate the capability of the new verification methodologies to be applied to complex circuit blocks and their properties.Gegenstand dieser Dissertation ist die Entwicklung neuer Methodiken zur formalen Verifikation nichtlinearer analoger elektronischer Schaltungen. Dazu werden im Rahmen dieser Arbeit entstandene neue AnsĂ€tze in den Bereichen verifikationsgerechte diskrete Modellierung analoger Schaltungen, Spezifikation analoger Schaltungseigenschaften und formale Verifikationsalgorithmen vorgestellt. Ausgehend vom Stand der Technik der Modellierung analoger Schaltungen fĂŒr die simulationsbasierte Verifikation wird im Rahmen dieser Arbeit die diskrete Modellierung analoger Schaltungen fĂŒr zustandsraumbasierte formale Verifikationsverfahren betrachtet. Dazu wurde ein neuer Ansatz zur diskreten Modellierung entwickelt, der die Aufteilungsstruktur anhand der Trajektorien der Vektorfelddynamik bestimmt. So wird eine hohe Genauigkeit der Nachfolgerrelation ermöglicht, woraus eine niedrigere Zahl an ZustĂ€nden fĂŒr ein diskretes Modell gleicher Genauigkeit im Vergleich mit dem bisherigen Stand der Technik folgt. Die Abbildung der Trajektorien-gesteuerten Partitionierung auf eine diskrete analoge Transitionsstruktur (DATS) erlaubt die Anwendung von formalen Verifikationsalgorithmen. Die formale Spezifikation von Eigenschaften in ersten AnsĂ€tzen zum Model Checking analoger Schaltungen hat sich stark an den bestehenden temporallogischen Verfahren aus dem Bereich digitaler Hardware orientiert. Ausgehend von einer Analyse digitaler Spezifikationskonzepte und der bestehenden AnsĂ€tze fĂŒr analoge Eigenschaften wurden Anforderungen an eine neue Spezifikationssprache in dieser Arbeit abgeleitet. Die aus diesen Anforderungen im Rahmen dieser Arbeit entwickelte analoge Spezifikationssprache "Analog Specification Language" (ASL) basiert auf einer natĂŒrlichsprachlichen Kapselung temporallogischer Operationen, die mit erweiterten Algorithmen zur Transitionspfadbestimmung, DurchfĂŒhrung von Berechnungen auf Zustandsparametern und Oszillationsbestimmung eine hohe AusdrucksstĂ€rke analoger Eigenschaften mit einer anwenderfreundlichen Syntax kombinieren konnte. Die zusammen mit ASL entwickelten Model Checking-Verifikationsalgorithmen zur Auswertung von ASL-Spezifikationen auf einem mit dem Trajektorien-gesteuerten Diskretisierungsverfahren erzeugten DATS-Modell bilden eine wesentliche Erweiterung zum Stand der Technik. Um einen Übergang der Verifikation von signalbasierten zu zustandsraumbasierten Methodiken zu ermöglichen, wurde im Rahmen dieser Arbeit ein Ansatz entwickelt, der die Übertragung von transienten Simulationsergebnissen aus nicht-formalen Testbench-Simulationsumgebungen in eine partielle DATS-Zustandsraumdarstellung ermöglicht. Damit kann, wie anhand von Beispielen gezeigt werden konnte, die gleiche ASL-Spezifikation fĂŒr Eigenschaften eines vollstĂ€ndigen diskreten Modells ohne Modifikation auch auf Simulationsergebnissen ausgewertet werden. Ein fĂŒr das formale ASL-basierte Model Checking entwickelter Ansatz zur Erzeugung von Gegenbeispielen fĂŒr als spezifikationsverletzend identifizierte Zustandsraumgebiete erlaubt es, Transitionsfolgen von einem definierten Startzustand zu einem spezifikationsverletzenden Zustand zu ermitteln. Auf Basis dieses Gegenbeispiel-Verfahrens wurde eine neue formale Eigenschaftsverifikationsmethodik mittels vollstĂ€ndig den Zustandsraum einer Schaltung abdeckenden Eingangsstimuli entwickelt. Die vollstĂ€ndig den Zustandsraum abdeckenden Eingangsstimuli bieten noch eine weitere Anwendungsmöglichkeit im Bereich des Äquivalenzvergleichs. Die im Rahmen dieser Arbeit entwickelte Methodik zum formalen Äquivalenzvergleich auf Basis der vollstĂ€ndig den Zustandsraum abdeckenden Eingangsstimuli ersetzt die anwenderdefinierten Eingangsstimuli durch die vollstĂ€ndig den Zustandsraum abdeckenden. So kann die Äquivalenz fĂŒr jeden möglichen Zustand der zu vergleichenden Implementierungen anhand eines automatisierten Vergleichs der Simulationsergebnisse beider Implementierungen gezeigt werden. Um die Ergebnisse der neu eingefĂŒhrten formalen Verifikationsmethodiken visuell zu untersuchen wurde ein Verfahren entwickelt, das den Zustandsraum und seine Dynamik mittels eines Partikel-Simulationsansatzes visualisiert. Da die Partikel ĂŒber den gesamten Zustandsraum randomisiert verteilt werden und sich dann gemĂ€ĂŸ der Vektorfelddynamik fortbewegen, kann auch hier ein Einblick in das Systemverhalten gewonnen werden, der eine weitestgehend vollstĂ€ndige und somit formale ReprĂ€sentation des Zustandsraums bietet. Die prototypische Implementierung der im Rahmen dieser Arbeit entwickelten formalen Verifikationsmethodiken wurde auf zahlreiche Beispielschaltungen angewendet. Die Ergebnisse fĂŒr die neuen AnsĂ€tze zur diskreten Modellierung, zur Spezifikation und zu Verifikationsalgorithmen analoger Schaltungen zeigen, dass die aus diesen AnsĂ€tzen erzeugten Verifikationsmethodiken erfolgreich auf komplexe Zustandsraumstrukturen angewendet werden können

    Applied Formal Methods in Wireless Sensor Networks

    Get PDF
    This work covers the application of formal methods to the world of wireless sensor networks. Mainly two different perspectives are analyzed through mathematical models which can be distinct for example into qualitative statements like "Is the system error free?" From the perspective of quantitative propositions we investigate protocol optimal parameter settings for an energy efficient operation

    The DS-Pnet modeling formalism for cyber-physical system development

    Get PDF
    This work presents the DS-Pnet modeling formalism (Dataflow, Signals and Petri nets), designed for the development of cyber-physical systems, combining the characteristics of Petri nets and dataflows to support the modeling of mixed systems containing both reactive parts and data processing operations. Inheriting the features of the parent IOPT Petri net class, including an external interface composed of input and output signals and events, the addition of dataflow operations brings enhanced modeling capabilities to specify mathematical data transformations and graphically express the dependencies between signals. Data-centric systems, that do not require reactive controllers, are designed using pure dataflow models. Component based model composition enables reusing existing components, create libraries of previously tested components and hierarchically decompose complex systems into smaller sub-systems. A precise execution semantics was defined, considering the relationship between dataflow and Petri net nodes, providing an abstraction to define the interface between reactive controllers and input and output signals, including analog sensors and actuators. The new formalism is supported by the IOPT-Flow Web based tool framework, offering tools to design and edit models, simulate model execution on the Web browser, plus model-checking and software/hardware automatic code generation tools to implement controllers running on embedded devices (C,VHDL and JavaScript). A new communication protocol was created to permit the automatic implementation of distributed cyber-physical systems composed of networks of remote components communicating over the Internet. The editor tool connects directly to remote embedded devices running DS-Pnet models and may import remote components into new models, contributing to simplify the creation of distributed cyber-physical applications, where the communication between distributed components is specified just by drawing arcs. Several application examples were designed to validate the proposed formalism and the associated framework, ranging from hardware solutions, industrial applications to distributed software applications

    Algorithm engineering in geometric network planning and data mining

    Get PDF
    The geometric nature of computational problems provides a rich source of solution strategies as well as complicating obstacles. This thesis considers three problems in the context of geometric network planning, data mining and spherical geometry. Geometric Network Planning: In the d-dimensional Generalized Minimum Manhattan Network problem (d-GMMN) one is interested in finding a minimum cost rectilinear network N connecting a given set of n pairs of points in ℝ^d such that each pair is connected in N via a shortest Manhattan path. The decision version of this optimization problem is known to be NP-hard. The best known upper bound is an O(log^{d+1} n) approximation for d>2 and an O(log n) approximation for 2-GMMN. In this work we provide some more insight in, whether the problem admits constant factor approximations in polynomial time. We develop two new algorithms, a `scale-diversity aware' algorithm with an O(D) approximation guarantee for 2-GMMN. Here D is a measure for the different `scales' that appear in the input, D ∈ O(log n) but potentially much smaller, depending on the problem instance. The other algorithm is based on a primal-dual scheme solving a more general, combinatorial problem - which we call Path Cover. On 2-GMMN it performs well in practice with good a posteriori, instance-based approximation guarantees. Furthermore, it can be extended to deal with obstacle avoiding requirements. We show that the Path Cover problem is at least as hard to approximate as the Hitting Set problem. Moreover, we show that solutions of the primal-dual algorithm are 4ω^2 approximations, where ω ≀ n denotes the maximum overlap of a problem instance. This implies that a potential proof of O(1)-inapproximability for 2-GMMN requires gadgets of many different scales and non-constant overlap in the construction. Geometric Map Matching for Heterogeneous Data: For a given sequence of location measurements, the goal of the geometric map matching is to compute a sequence of movements along edges of a spatially embedded graph which provides a `good explanation' for the measurements. The problem gets challenging as real world data, like traces or graphs from the OpenStreetMap project, does not exhibit homogeneous data quality. Graph details and errors vary in areas and each trace has changing noise and precision. Hence, formalizing what a `good explanation' is becomes quite difficult. We propose a novel map matching approach, which locally adapts to the data quality by constructing what we call dominance decompositions. While our approach is computationally more expensive than previous approaches, our experiments show that it allows for high quality map matching, even in presence of highly variable data quality without parameter tuning. Rational Points on the Unit Spheres: Each non-zero point in ℝ^d identifies a closest point x on the unit sphere S^{d-1}. We are interested in computing an Δ-approximation y ∈ ℚ^d for x, that is exactly on S^{d-1} and has low bit-size. We revise lower bounds on rational approximations and provide explicit spherical instances. We prove that floating-point numbers can only provide trivial solutions to the sphere equation in ℝ^2 and ℝ^3. However, we show how to construct a rational point with denominators of at most 10(d-1)/Δ^2 for any given Δ ∈ (0, 1/8], improving on a previous result. The method further benefits from algorithms for simultaneous Diophantine approximation. Our open-source implementation and experiments demonstrate the practicality of our approach in the context of massive data sets, geo-referenced by latitude and longitude values.Die geometrische Gestalt von Berechnungsproblemen liefert vielfĂ€ltige Lösungsstrategieen aber auch Hindernisse. Diese Arbeit betrachtet drei Probleme im Gebiet der geometrischen Netzwerk Planung, des geometrischen Data Minings und der sphĂ€rischen Geometrie. Geometrische Netzwerk Planung: Im d-dimensionalen Generalized Minimum Manhattan Network Problem (d-GMMN) möchte man ein gĂŒnstigstes geradliniges Netzwerk finden, welches jedes der gegebenen n Punktepaare aus ℝ^d mit einem kĂŒrzesten Manhattan Pfad verbindet. Es ist bekannt, dass die Entscheidungsvariante dieses Optimierungsproblems NP-hart ist. Die beste bekannte obere Schranke ist eine O(log^{d+1} n) Approximation fĂŒr d>2 und eine O(log n) Approximation fĂŒr 2-GMMN. Durch diese Arbeit geben wir etwas mehr Einblick, ob das Problem eine Approximation mit konstantem Faktor in polynomieller Zeit zulĂ€sst. Wir entwickeln zwei neue Algorithmen. Ersterer nutzt die `SkalendiversitĂ€t' und hat eine O(D) ApproximationsgĂŒte fĂŒr 2-GMMN. Hierbei ist D ein Maß fĂŒr die in Eingaben auftretende `Skalen'. D ∈ O(log n), aber potentiell deutlichen kleiner fĂŒr manche Problem Instanzen. Der andere Algorithmus basiert auf einem Primal-Dual Schema zur Lösung eines allgemeineren, kombinatorischen Problems, welches wir Path Cover nennen. Die praktisch erzielten a posteriori ApproximationsgĂŒten auf Instanzen von 2-GMMN verhalten sich gut. Dieser Algorithmus kann fĂŒr Netzwerk Planungsprobleme mit Hindernis-Anforderungen angepasst werden. Wir zeigen, dass das Path Cover Problem mindestens so schwierig zu approximieren ist wie das Hitting Set Problem. DarĂŒber hinaus zeigen wir, dass Lösungen des Primal-Dual Algorithmus 4ω^2 Approximationen sind, wobei ω ≀ n die maximale Überlappung einer Probleminstanz bezeichnet. Daher mĂŒssen potentielle Beweise, die konstante Approximationen fĂŒr 2-GMMN ausschließen möchten, Instanzen mit vielen unterschiedlichen Skalen und nicht konstanter Überlappung konstruieren. Geometrisches Map Matching fĂŒr heterogene Daten: FĂŒr eine gegebene Sequenz von Positionsmessungen ist das Ziel des geometrischen Map Matchings eine Sequenz von Bewegungen entlang Kanten eines rĂ€umlich eingebetteten Graphen zu finden, welche eine `gute ErklĂ€rung' fĂŒr die Messungen ist. Das Problem wird anspruchsvoll da reale Messungen, wie beispielsweise Traces oder Graphen des OpenStreetMap Projekts, keine homogene DatenqualitĂ€t aufweisen. Graphdetails und -fehler variieren in Gebieten und jeder Trace hat wechselndes Rauschen und Messgenauigkeiten. Zu formalisieren, was eine `gute ErklĂ€rung' ist, wird dadurch schwer. Wir stellen einen neuen Map Matching Ansatz vor, welcher sich lokal der DatenqualitĂ€t anpasst indem er sogenannte Dominance Decompositions berechnet. Obwohl unser Ansatz teurer im Rechenaufwand ist, zeigen unsere Experimente, dass qualitativ hochwertige Map Matching Ergebnisse auf hoch variabler DatenqualitĂ€t erzielbar sind ohne vorher Parameter kalibrieren zu mĂŒssen. Rationale Punkte auf EinheitssphĂ€ren: Jeder, von Null verschiedene, Punkt in ℝ^d identifiziert einen nĂ€chsten Punkt x auf der EinheitssphĂ€re S^{d-1}. Wir suchen eine Δ-Approximation y ∈ ℚ^d fĂŒr x zu berechnen, welche exakt auf S^{d-1} ist und niedrige Bit-GrĂ¶ĂŸe hat. Wir wiederholen untere Schranken an rationale Approximationen und liefern explizite, sphĂ€rische Instanzen. Wir beweisen, dass Floating-Point Zahlen nur triviale Lösungen zur SphĂ€ren-Gleichung in ℝ^2 und ℝ^3 liefern können. Jedoch zeigen wir die Konstruktion eines rationalen Punktes mit Nennern die maximal 10(d-1)/Δ^2 sind fĂŒr gegebene Δ ∈ (0, 1/8], was ein bekanntes Resultat verbessert. DarĂŒber hinaus profitiert die Methode von Algorithmen fĂŒr simultane Diophantische Approximationen. Unsere quell-offene Implementierung und die Experimente demonstrieren die PraktikabilitĂ€t unseres Ansatzes fĂŒr sehr große, durch geometrische LĂ€ngen- und Breitengrade referenzierte, DatensĂ€tze

    Applications of MATLAB in Science and Engineering

    Get PDF
    The book consists of 24 chapters illustrating a wide range of areas where MATLAB tools are applied. These areas include mathematics, physics, chemistry and chemical engineering, mechanical engineering, biological (molecular biology) and medical sciences, communication and control systems, digital signal, image and video processing, system modeling and simulation. Many interesting problems have been included throughout the book, and its contents will be beneficial for students and professionals in wide areas of interest
    • 

    corecore