4,235 research outputs found

    Randomness and the ergodic decomposition

    Get PDF
    International audienceThe interaction between algorithmic randomness and ergodic theory is a rich field of investigation. In this paper we study the particular case of the ergodic decomposition. We give several positive partial answers, leaving the general problem open. We shortly illustrate how the effectivity of the ergodic decomposition allows one to easily extend results from the ergodic case to the non-ergodic one (namely Poincaré recurrence theorem). We also show that in some cases the ergodic measures can be computed from the typical realizations of the process

    Signatures of Infinity: Nonergodicity and Resource Scaling in Prediction, Complexity, and Learning

    Full text link
    We introduce a simple analysis of the structural complexity of infinite-memory processes built from random samples of stationary, ergodic finite-memory component processes. Such processes are familiar from the well known multi-arm Bandit problem. We contrast our analysis with computation-theoretic and statistical inference approaches to understanding their complexity. The result is an alternative view of the relationship between predictability, complexity, and learning that highlights the distinct ways in which informational and correlational divergences arise in complex ergodic and nonergodic processes. We draw out consequences for the resource divergences that delineate the structural hierarchy of ergodic processes and for processes that are themselves hierarchical.Comment: 8 pages, 1 figure; http://csc.ucdavis.edu/~cmg/compmech/pubs/soi.pd

    A constructive version of Birkhoff's ergodic theorem for Martin-L\"of random points

    Get PDF
    A theorem of Ku\v{c}era states that given a Martin-L\"of random infinite binary sequence {\omega} and an effectively open set A of measure less than 1, some tail of {\omega} is not in A. We first prove several results in the same spirit and generalize them via an effective version of a weak form of Birkhoff's ergodic theorem. We then use this result to get a stronger form of it, namely a very general effective version of Birkhoff's ergodic theorem, which improves all the results previously obtained in this direction, in particular those of V'Yugin, Nandakumar and Hoyrup, Rojas.Comment: Improved version of the CiE'10 paper, with the strong form of Birkhoff's ergodic theorem for random point

    Entropy and Quantum Kolmogorov Complexity: A Quantum Brudno's Theorem

    Full text link
    In classical information theory, entropy rate and Kolmogorov complexity per symbol are related by a theorem of Brudno. In this paper, we prove a quantum version of this theorem, connecting the von Neumann entropy rate and two notions of quantum Kolmogorov complexity, both based on the shortest qubit descriptions of qubit strings that, run by a universal quantum Turing machine, reproduce them as outputs.Comment: 26 pages, no figures. Reference to publication added: published in the Communications in Mathematical Physics (http://www.springerlink.com/content/1432-0916/

    Fully oscillating sequences and weighted multiple ergodic limit

    Get PDF
    We prove that fully oscillating sequences are orthogonal to multiple ergodic realizations of affine maps of zero entropy on compact abelian groups. It is more than what Sarnak's conjecture requires for these dynamical systems
    • …
    corecore