1,614 research outputs found

    Natural Halting Probabilities, Partial Randomness, and Zeta Functions

    Get PDF
    We introduce the zeta number, natural halting probability and natural complexity of a Turing machine and we relate them to Chaitin's Omega number, halting probability, and program-size complexity. A classification of Turing machines according to their zeta numbers is proposed: divergent, convergent and tuatara. We prove the existence of universal convergent and tuatara machines. Various results on (algorithmic) randomness and partial randomness are proved. For example, we show that the zeta number of a universal tuatara machine is c.e. and random. A new type of partial randomness, asymptotic randomness, is introduced. Finally we show that in contrast to classical (algorithmic) randomness--which cannot be naturally characterised in terms of plain complexity--asymptotic randomness admits such a characterisation.Comment: Accepted for publication in Information and Computin

    Computing A Glimpse of Randomness

    Full text link
    A Chaitin Omega number is the halting probability of a universal Chaitin (self-delimiting Turing) machine. Every Omega number is both computably enumerable (the limit of a computable, increasing, converging sequence of rationals) and random (its binary expansion is an algorithmic random sequence). In particular, every Omega number is strongly non-computable. The aim of this paper is to describe a procedure, which combines Java programming and mathematical proofs, for computing the exact values of the first 64 bits of a Chaitin Omega: 0000001000000100000110001000011010001111110010111011101000010000. Full description of programs and proofs will be given elsewhere.Comment: 16 pages; Experimental Mathematics (accepted

    Numerical Evaluation of Algorithmic Complexity for Short Strings: A Glance into the Innermost Structure of Randomness

    Full text link
    We describe an alternative method (to compression) that combines several theoretical and experimental results to numerically approximate the algorithmic (Kolmogorov-Chaitin) complexity of all ∑n=182n\sum_{n=1}^82^n bit strings up to 8 bits long, and for some between 9 and 16 bits long. This is done by an exhaustive execution of all deterministic 2-symbol Turing machines with up to 4 states for which the halting times are known thanks to the Busy Beaver problem, that is 11019960576 machines. An output frequency distribution is then computed, from which the algorithmic probability is calculated and the algorithmic complexity evaluated by way of the (Levin-Zvonkin-Chaitin) coding theorem.Comment: 29 pages, 5 figures. Version as accepted by the journal Applied Mathematics and Computatio

    Most Programs Stop Quickly or Never Halt

    Get PDF
    Since many real-world problems arising in the fields of compiler optimisation, automated software engineering, formal proof systems, and so forth are equivalent to the Halting Problem--the most notorious undecidable problem--there is a growing interest, not only academically, in understanding the problem better and in providing alternative solutions. Halting computations can be recognised by simply running them; the main difficulty is to detect non-halting programs. Our approach is to have the probability space extend over both space and time and to consider the probability that a random NN-bit program has halted by a random time. We postulate an a priori computable probability distribution on all possible runtimes and we prove that given an integer k>0, we can effectively compute a time bound T such that the probability that an N-bit program will eventually halt given that it has not halted by T is smaller than 2^{-k}. We also show that the set of halting programs (which is computably enumerable, but not computable) can be written as a disjoint union of a computable set and a set of effectively vanishing probability. Finally, we show that ``long'' runtimes are effectively rare. More formally, the set of times at which an N-bit program can stop after the time 2^{N+constant} has effectively zero density.Comment: Shortened abstract and changed format of references to match Adv. Appl. Math guideline

    Ultimate Intelligence Part I: Physical Completeness and Objectivity of Induction

    Full text link
    We propose that Solomonoff induction is complete in the physical sense via several strong physical arguments. We also argue that Solomonoff induction is fully applicable to quantum mechanics. We show how to choose an objective reference machine for universal induction by defining a physical message complexity and physical message probability, and argue that this choice dissolves some well-known objections to universal induction. We also introduce many more variants of physical message complexity based on energy and action, and discuss the ramifications of our proposals.Comment: Under review at AGI-2015 conference. An early draft was submitted to ALT-2014. This paper is now being split into two papers, one philosophical, and one more technical. We intend that all installments of the paper series will be on the arxi
    • …
    corecore