72 research outputs found

    Randomly Punctured Spatially Coupled LDPC Codes

    Get PDF
    In this paper, we study random puncturing of protograph-based spatially coupled low-density parity-check (SC- LDPC) code ensembles. We show that, with respect to iterative decoding threshold, the strength and suitability of an LDPC code ensemble for random puncturing over the binary erasure channel (BEC) is completely determined by a single constant that depends only on the rate and iterative decoding threshold of the mother code ensemble. We then use this analysis to show that randomly punctured SC-LDPC code ensembles display near capacity thresholds for a wide range of rates. We also perform an asymptotic minimum distance analysis and show that, like the SC-LDPC mother code ensemble, the punctured SC-LDPC code ensembles are also asymptotically good. Finally, we present some simulation results that confirm the excellent decoding performance promised by the asymptotic results

    Spatially Coupled Turbo Codes: Principles and Finite Length Performance

    Get PDF
    In this paper, we give an overview of spatially coupled turbo codes (SC-TCs), the spatial coupling of parallel and serially concatenated convolutional codes, recently introduced by the authors. For presentation purposes, we focus on spatially coupled serially concatenated codes (SC-SCCs). We review the main principles of SC-TCs and discuss their exact density evolution (DE) analysis on the binary erasure channel. We also consider the construction of a family of rate-compatible SC-SCCs with simple 4-state component encoders. For all considered code rates, threshold saturation of the belief propagation (BP) to the maximum a posteriori threshold of the uncoupled ensemble is demonstrated, and it is shown that the BP threshold approaches the Shannon limit as the coupling memory increases. Finally we give some simulation results for finite lengths.Comment: Invited paper, IEEE Int. Symp. Wireless Communications Systems (ISWCS), Aug. 201

    Joint Compute and Forward for the Two Way Relay Channel with Spatially Coupled LDPC Codes

    Full text link
    We consider the design and analysis of coding schemes for the binary input two way relay channel with erasure noise. We are particularly interested in reliable physical layer network coding in which the relay performs perfect error correction prior to forwarding messages. The best known achievable rates for this problem can be achieved through either decode and forward or compute and forward relaying. We consider a decoding paradigm called joint compute and forward which we numerically show can achieve the best of these rates with a single encoder and decoder. This is accomplished by deriving the exact performance of a message passing decoder based on joint compute and forward for spatially coupled LDPC ensembles.Comment: This paper was submitted to IEEE Global Communications Conference 201

    Spatially Coupled Turbo Codes

    Get PDF
    In this paper, we introduce the concept of spatially coupled turbo codes (SC-TCs), as the turbo codes counterpart of spatially coupled low-density parity-check codes. We describe spatial coupling for both Berrou et al. and Benedetto et al. parallel and serially concatenated codes. For the binary erasure channel, we derive the exact density evolution (DE) equations of SC-TCs by using the method proposed by Kurkoski et al. to compute the decoding erasure probability of convolutional encoders. Using DE, we then analyze the asymptotic behavior of SC-TCs. We observe that the belief propagation (BP) threshold of SC-TCs improves with respect to that of the uncoupled ensemble and approaches its maximum a posteriori threshold. This phenomenon is especially significant for serially concatenated codes, whose uncoupled ensemble suffers from a poor BP threshold.Comment: in Proc. 8th International Symposium on Turbo Codes & Iterative Information Processing 2014, Bremen, Germany, August 2014. To appear. (The PCC ensemble is changed with respect to the one in the previous version of the paper. However, it gives identical thresholds

    Spatially-Coupled MacKay-Neal Codes and Hsu-Anastasopoulos Codes

    Full text link
    Kudekar et al. recently proved that for transmission over the binary erasure channel (BEC), spatial coupling of LDPC codes increases the BP threshold of the coupled ensemble to the MAP threshold of the underlying LDPC codes. One major drawback of the capacity-achieving spatially-coupled LDPC codes is that one needs to increase the column and row weight of parity-check matrices of the underlying LDPC codes. It is proved, that Hsu-Anastasopoulos (HA) codes and MacKay-Neal (MN) codes achieve the capacity of memoryless binary-input symmetric-output channels under MAP decoding with bounded column and row weight of the parity-check matrices. The HA codes and the MN codes are dual codes each other. The aim of this paper is to present an empirical evidence that spatially-coupled MN (resp. HA) codes with bounded column and row weight achieve the capacity of the BEC. To this end, we introduce a spatial coupling scheme of MN (resp. HA) codes. By density evolution analysis, we will show that the resulting spatially-coupled MN (resp. HA) codes have the BP threshold close to the Shannon limit.Comment: Corrected typos in degree distributions \nu and \mu of MN and HA code

    Spatially Coupled LDPC Codes for Decode-and-Forward in Erasure Relay Channel

    Full text link
    We consider spatially-coupled protograph-based LDPC codes for the three terminal erasure relay channel. It is observed that BP threshold value, the maximal erasure probability of the channel for which decoding error probability converges to zero, of spatially-coupled codes, in particular spatially-coupled MacKay-Neal code, is close to the theoretical limit for the relay channel. Empirical results suggest that spatially-coupled protograph-based LDPC codes have great potential to achieve theoretical limit of a general relay channel.Comment: 7 pages, extended version of ISIT201

    Spatially Coupled LDPC Codes Constructed from Protographs

    Full text link
    In this paper, we construct protograph-based spatially coupled low-density parity-check (SC-LDPC) codes by coupling together a series of L disjoint, or uncoupled, LDPC code Tanner graphs into a single coupled chain. By varying L, we obtain a flexible family of code ensembles with varying rates and frame lengths that can share the same encoding and decoding architecture for arbitrary L. We demonstrate that the resulting codes combine the best features of optimized irregular and regular codes in one design: capacity approaching iterative belief propagation (BP) decoding thresholds and linear growth of minimum distance with block length. In particular, we show that, for sufficiently large L, the BP thresholds on both the binary erasure channel (BEC) and the binary-input additive white Gaussian noise channel (AWGNC) saturate to a particular value significantly better than the BP decoding threshold and numerically indistinguishable from the optimal maximum a-posteriori (MAP) decoding threshold of the uncoupled LDPC code. When all variable nodes in the coupled chain have degree greater than two, asymptotically the error probability converges at least doubly exponentially with decoding iterations and we obtain sequences of asymptotically good LDPC codes with fast convergence rates and BP thresholds close to the Shannon limit. Further, the gap to capacity decreases as the density of the graph increases, opening up a new way to construct capacity achieving codes on memoryless binary-input symmetric-output (MBS) channels with low-complexity BP decoding.Comment: Submitted to the IEEE Transactions on Information Theor

    Braided Convolutional Codes -- A Class of Spatially Coupled Turbo-Like Codes

    Get PDF
    In this paper, we investigate the impact of spatial coupling on the thresholds of turbo-like codes. Parallel concatenated and serially concatenated convolutional codes as well as braided convolutional codes (BCCs) are compared by means of an exact density evolution (DE) analysis for the binary erasure channel (BEC). We propose two extensions of the original BCC ensemble to improve its threshold and demonstrate that their BP thresholds approach the maximum-a-posteriori (MAP) threshold of the uncoupled ensemble. A comparison of the different ensembles shows that parallel concatenated ensembles can be outperformed by both serially concatenated and BCC ensembles, although they have the best BP thresholds in the uncoupled case.Comment: Invited paper, International Conference on Signal Processing and Communications, SPCOM 2014, Bangalore, India, July 22-25, 201

    Improving soft FEC performance for higher-order modulations via optimized bit channel mappings

    Get PDF
    Soft forward error correction with higher-order modulations is often implemented in practice via the pragmatic bit-interleaved coded modulation paradigm, where a single binary code is mapped to a nonbinary modulation. In this paper, we study the optimization of the mapping of the coded bits to the modulation bits for a polarization-multiplexed fiber-optical system without optical inline dispersion compensation. Our focus is on protograph-based low-density parity-check (LDPC) codes which allow for an efficient hardware implementation, suitable for high-speed optical communications. The optimization is applied to the AR4JA protograph family, and further extended to protograph-based spatially coupled LDPC codes assuming a windowed decoder. Full field simulations via the split-step Fourier method are used to verify the analysis. The results show performance gains of up to 0.25 dB, which translate into a possible extension of the transmission reach by roughly up to 8%, without significantly increasing the system complexity.Comment: This paper was published in Optics Express and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-22-12-1454
    • …
    corecore