470 research outputs found

    Improved Bounds for Randomly Colouring Simple Hypergraphs

    Get PDF
    We study the problem of sampling almost uniform proper q-colourings in k-uniform simple hypergraphs with maximum degree ?. For any ? > 0, if k ? 20(1+?)/? and q ? 100?^({2+?}/{k-4/?-4}), the running time of our algorithm is O?(poly(? k)? n^1.01), where n is the number of vertices. Our result requires fewer colours than previous results for general hypergraphs (Jain, Pham, and Vuong, 2021; He, Sun, and Wu, 2021), and does not require ?(log n) colours unlike the work of Frieze and Anastos (2017)

    On the minimum degree of minimal Ramsey graphs for multiple colours

    Full text link
    A graph G is r-Ramsey for a graph H, denoted by G\rightarrow (H)_r, if every r-colouring of the edges of G contains a monochromatic copy of H. The graph G is called r-Ramsey-minimal for H if it is r-Ramsey for H but no proper subgraph of G possesses this property. Let s_r(H) denote the smallest minimum degree of G over all graphs G that are r-Ramsey-minimal for H. The study of the parameter s_2 was initiated by Burr, Erd\H{o}s, and Lov\'{a}sz in 1976 when they showed that for the clique s_2(K_k)=(k-1)^2. In this paper, we study the dependency of s_r(K_k) on r and show that, under the condition that k is constant, s_r(K_k) = r^2 polylog r. We also give an upper bound on s_r(K_k) which is polynomial in both r and k, and we determine s_r(K_3) up to a factor of log r

    Metric Construction, Stopping Times and Path Coupling

    Full text link
    In this paper we examine the importance of the choice of metric in path coupling, and the relationship of this to \emph{stopping time analysis}. We give strong evidence that stopping time analysis is no more powerful than standard path coupling. In particular, we prove a stronger theorem for path coupling with stopping times, using a metric which allows us to restrict analysis to standard one-step path coupling. This approach provides insight for the design of non-standard metrics giving improvements in the analysis of specific problems. We give illustrative applications to hypergraph independent sets and SAT instances, hypergraph colourings and colourings of bipartite graphs.Comment: 21 pages, revised version includes statement and proof of general stopping times theorem (section 2.2), and additonal remarks in section

    Path Coupling Using Stopping Times and Counting Independent Sets and Colourings in Hypergraphs

    Full text link
    We give a new method for analysing the mixing time of a Markov chain using path coupling with stopping times. We apply this approach to two hypergraph problems. We show that the Glauber dynamics for independent sets in a hypergraph mixes rapidly as long as the maximum degree Delta of a vertex and the minimum size m of an edge satisfy m>= 2Delta+1. We also show that the Glauber dynamics for proper q-colourings of a hypergraph mixes rapidly if m>= 4 and q > Delta, and if m=3 and q>=1.65Delta. We give related results on the hardness of exact and approximate counting for both problems.Comment: Simpler proof of main theorem. Improved bound on mixing time. 19 page

    An asymptotic bound for the strong chromatic number

    Get PDF
    The strong chromatic number χs(G)\chi_{\text{s}}(G) of a graph GG on nn vertices is the least number rr with the following property: after adding r⌈n/r⌉−nr \lceil n/r \rceil - n isolated vertices to GG and taking the union with any collection of spanning disjoint copies of KrK_r in the same vertex set, the resulting graph has a proper vertex-colouring with rr colours. We show that for every c>0c > 0 and every graph GG on nn vertices with Δ(G)≥cn\Delta(G) \ge cn, χs(G)≤(2+o(1))Δ(G)\chi_{\text{s}}(G) \leq (2 + o(1)) \Delta(G), which is asymptotically best possible.Comment: Minor correction, accepted for publication in Combin. Probab. Compu
    • …
    corecore