8 research outputs found

    Assumptions in Quantum Cryptography

    Full text link
    Quantum cryptography uses techniques and ideas from physics and computer science. The combination of these ideas makes the security proofs of quantum cryptography a complicated task. To prove that a quantum-cryptography protocol is secure, assumptions are made about the protocol and its devices. If these assumptions are not justified in an implementation then an eavesdropper may break the security of the protocol. Therefore, security is crucially dependent on which assumptions are made and how justified the assumptions are in an implementation of the protocol. This thesis is primarily a review that analyzes and clarifies the connection between the security proofs of quantum-cryptography protocols and their experimental implementations. In particular, we focus on quantum key distribution: the task of distributing a secret random key between two parties. We provide a comprehensive introduction to several concepts: quantum mechanics using the density operator formalism, quantum cryptography, and quantum key distribution. We define security for quantum key distribution and outline several mathematical techniques that can either be used to prove security or simplify security proofs. In addition, we analyze the assumptions made in quantum cryptography and how they may or may not be justified in implementations. Along with the review, we propose a framework that decomposes quantum-key-distribution protocols and their assumptions into several classes. Protocol classes can be used to clarify which proof techniques apply to which kinds of protocols. Assumption classes can be used to specify which assumptions are justified in implementations and which could be exploited by an eavesdropper. Two contributions of the author are discussed: the security proofs of two two-way quantum-key-distribution protocols and an intuitive proof of the data-processing inequality.Comment: PhD Thesis, 221 page

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Understanding Quantum Technologies 2022

    Full text link
    Understanding Quantum Technologies 2022 is a creative-commons ebook that provides a unique 360 degrees overview of quantum technologies from science and technology to geopolitical and societal issues. It covers quantum physics history, quantum physics 101, gate-based quantum computing, quantum computing engineering (including quantum error corrections and quantum computing energetics), quantum computing hardware (all qubit types, including quantum annealing and quantum simulation paradigms, history, science, research, implementation and vendors), quantum enabling technologies (cryogenics, control electronics, photonics, components fabs, raw materials), quantum computing algorithms, software development tools and use cases, unconventional computing (potential alternatives to quantum and classical computing), quantum telecommunications and cryptography, quantum sensing, quantum technologies around the world, quantum technologies societal impact and even quantum fake sciences. The main audience are computer science engineers, developers and IT specialists as well as quantum scientists and students who want to acquire a global view of how quantum technologies work, and particularly quantum computing. This version is an extensive update to the 2021 edition published in October 2021.Comment: 1132 pages, 920 figures, Letter forma

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum
    corecore