212 research outputs found

    Fractional total colourings of graphs of high girth

    Get PDF
    Reed conjectured that for every epsilon>0 and Delta there exists g such that the fractional total chromatic number of a graph with maximum degree Delta and girth at least g is at most Delta+1+epsilon. We prove the conjecture for Delta=3 and for even Delta>=4 in the following stronger form: For each of these values of Delta, there exists g such that the fractional total chromatic number of any graph with maximum degree Delta and girth at least g is equal to Delta+1

    Metric Construction, Stopping Times and Path Coupling

    Full text link
    In this paper we examine the importance of the choice of metric in path coupling, and the relationship of this to \emph{stopping time analysis}. We give strong evidence that stopping time analysis is no more powerful than standard path coupling. In particular, we prove a stronger theorem for path coupling with stopping times, using a metric which allows us to restrict analysis to standard one-step path coupling. This approach provides insight for the design of non-standard metrics giving improvements in the analysis of specific problems. We give illustrative applications to hypergraph independent sets and SAT instances, hypergraph colourings and colourings of bipartite graphs.Comment: 21 pages, revised version includes statement and proof of general stopping times theorem (section 2.2), and additonal remarks in section

    Non-Local Probes Do Not Help with Graph Problems

    Full text link
    This work bridges the gap between distributed and centralised models of computing in the context of sublinear-time graph algorithms. A priori, typical centralised models of computing (e.g., parallel decision trees or centralised local algorithms) seem to be much more powerful than distributed message-passing algorithms: centralised algorithms can directly probe any part of the input, while in distributed algorithms nodes can only communicate with their immediate neighbours. We show that for a large class of graph problems, this extra freedom does not help centralised algorithms at all: for example, efficient stateless deterministic centralised local algorithms can be simulated with efficient distributed message-passing algorithms. In particular, this enables us to transfer existing lower bound results from distributed algorithms to centralised local algorithms

    Coupling with the stationary distribution and improved sampling for colorings and independent sets

    Full text link
    We present an improved coupling technique for analyzing the mixing time of Markov chains. Using our technique, we simplify and extend previous results for sampling colorings and independent sets. Our approach uses properties of the stationary distribution to avoid worst-case configurations which arise in the traditional approach. As an application, we show that for k/Δ>1.764k/\Delta >1.764, the Glauber dynamics on kk-colorings of a graph on nn vertices with maximum degree Δ\Delta converges in O(nlogn)O(n\log n) steps, assuming Δ=Ω(logn)\Delta =\Omega(\log n) and that the graph is triangle-free. Previously, girth 5\ge 5 was needed. As a second application, we give a polynomial-time algorithm for sampling weighted independent sets from the Gibbs distribution of the hard-core lattice gas model at fugacity λ<(1ϵ)e/Δ\lambda <(1-\epsilon)e/\Delta, on a regular graph GG on nn vertices of degree Δ=Ω(logn)\Delta =\Omega(\log n) and girth 6\ge 6. The best known algorithm for general graphs currently assumes λ<2/(Δ2)\lambda <2/(\Delta -2).Comment: Published at http://dx.doi.org/10.1214/105051606000000330 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore