80 research outputs found

    An Almost Tight RMR Lower Bound for Abortable Test-And-Set

    Get PDF
    We prove a lower bound of Omega(log n/log log n) for the remote memory reference (RMR) complexity of abortable test-and-set (leader election) in the cache-coherent (CC) and the distributed shared memory (DSM) model. This separates the complexities of abortable and non-abortable test-and-set, as the latter has constant RMR complexity [Wojciech Golab et al., 2010]. Golab, Hendler, Hadzilacos and Woelfel [Wojciech M. Golab et al., 2012] showed that compare-and-swap can be implemented from registers and test-and-set objects with constant RMR complexity. We observe that a small modification to that implementation is abortable, provided that the used test-and-set objects are atomic (or abortable). As a consequence, using existing efficient randomized wait-free implementations of test-and-set [George Giakkoupis and Philipp Woelfel, 2012], we obtain randomized abortable compare-and-swap objects with almost constant (O(log^* n)) RMR complexity

    Randomized versus Deterministic Implementations of Concurrent Data Structures

    Get PDF
    One of the key trends in computing over the past two decades has been increased distribution, both at the processor level, where multi-core architectures are now the norm, and at the system level, where many key services are currently distributed overmultiple machines. Thus, understanding the power and limitations of computing in a concurrent, distributed setting is one of the major challenges in Computer Science. In this thesis, we analyze the complexity of implementing concurrent data structures in asynchronous shared memory systems. We focus on the complexity of a classic distributed coordination task called renaming, in which a set of processes need to pick distinct names from a small set of identifiers. We present the first tight bounds for the time complexity of this problem, both for deterministic and randomized implementations, solving a long-standing open problem in the field. For deterministic algorithms, we prove a tight linear lower bound; for randomized solutions, we provide logarithmic upper and lower bounds on time complexity. Together, these results show an exponential separation between deterministic and randomized renaming solutions. Importantly, the lower bounds extend to implementations of practical shared-memory data structures, such as queues, stacks, and counters. From a technical perspective, this thesis highlights new connections between the distributed renaming problem and other fundamental objects, such as sorting networks, mutual exclusion, and counters. In particular, we show that sorting networks can be used to obtain optimal randomized solutions to renaming, and that, in turn, the existence of these solutions implies a linear lower bound on the complexity of the problem. In sum, the results in this thesis suggest that deterministic implementations of shared-memory data structures do not scale well in terms of worst-case time complexity. On the positive side, we emphasize randomization as a natural alternative, which can circumvent the deterministic lower bounds with high probability. Thus, a promising direction for future work is to extend our randomized renaming techniques to obtain efficient implementations of concurrent data structures

    Tight Bounds for Asynchronous Renaming

    Full text link

    Randomized Mutual Exclusion with Constant Amortized RMR Complexity on the DSM

    Get PDF
    International audienceIn this paper we settle an open question by determining the remote memory reference (RMR) complexity of randomized mutual exclusion, on the distributed shared memory model (DSM) with atomic registers, in a weak but natural (and stronger than oblivious) adversary model. In particular, we present a mutual exclusion algorithm that has constant expected amortized RMR complexity and is deterministically deadlock free. Prior to this work, no randomized algorithm with o(log n/ log log n) RMR complexity was known for the DSM model. Our algorithm is fairly simple, and compares favorably with one by Bender and Gilbert (FOCS 2011) for the CC model, which has expected amortized RMR complexity O(log^2 log n) and provides only probabilistic deadlock freedom

    Lower Bounds for Shared-Memory Leader Election Under Bounded Write Contention

    Get PDF
    This paper gives tight logarithmic lower bounds on the solo step complexity of leader election in an asynchronous shared-memory model with single-writer multi-reader (SWMR) registers, for both deterministic and randomized obstruction-free algorithms. The approach extends to lower bounds for deterministic and randomized obstruction-free algorithms using multi-writer registers under bounded write concurrency, showing a trade-off between the solo step complexity of a leader election algorithm, and the worst-case number of stalls incurred by a processor in an execution

    Randomized loose renaming in O(log log n) time

    Get PDF
    International audienceRenaming is a classic distributed coordination task in which a set of processes must pick distinct identifiers from a small namespace. In this paper, we consider the time complexity of this problem when the namespace is linear in the number of participants, a variant known as loose renaming. We give a non-adaptive algorithm with O(log⁥log⁥n)O( \log \log n ) (individual) step complexity, where nn is a known upper bound on contention, and an adaptive algorithm with step complexity O((log⁥log⁥k)2)O( (\log \log k)^2 ), where kk is the actual contention in the execution. We also present a variant of the adaptive algorithm which requires O(klog⁥log⁥k)O( k \log \log k ) \emph{total} process steps. All upper bounds hold with high probability against a strong adaptive adversary. We complement the algorithms with an Ω(log⁥log⁥n)\Omega( \log \log n ) expected time lower bound on the complexity of randomized renaming using test-and-set operations and linear space. The result is based on a new coupling technique, and is the first to apply to non-adaptive randomized renaming. Since our algorithms use O(n)O(n) test-and-set objects, our results provide matching bounds on the cost of loose renaming in this setting

    How to Elect a Leader Faster than a Tournament

    Full text link
    The problem of electing a leader from among nn contenders is one of the fundamental questions in distributed computing. In its simplest formulation, the task is as follows: given nn processors, all participants must eventually return a win or lose indication, such that a single contender may win. Despite a considerable amount of work on leader election, the following question is still open: can we elect a leader in an asynchronous fault-prone system faster than just running a Θ(log⁥n)\Theta(\log n)-time tournament, against a strong adaptive adversary? In this paper, we answer this question in the affirmative, improving on a decades-old upper bound. We introduce two new algorithmic ideas to reduce the time complexity of electing a leader to O(log⁡∗n)O(\log^* n), using O(n2)O(n^2) point-to-point messages. A non-trivial application of our algorithm is a new upper bound for the tight renaming problem, assigning nn items to the nn participants in expected O(log⁥2n)O(\log^2 n) time and O(n2)O(n^2) messages. We complement our results with lower bound of Ω(n2)\Omega(n^2) messages for solving these two problems, closing the question of their message complexity

    Notes on Theory of Distributed Systems

    Full text link
    Notes for the Yale course CPSC 465/565 Theory of Distributed Systems
    • 

    corecore