84,563 research outputs found

    Tight Bounds for On-line Tree Embedding

    Get PDF
    Many tree–structured computations are inherently parallel. As leaf processes are recursively spawned they can be assigned to independent processors in a multicomputer network. To maintain load balance, an on–line mapping algorithm must distribute processes equitably among processors. Additionally, the algorithm itself must be distributed in nature, and process allocation must be completed via message–passing with minimal communication overhead. This paper investigates bounds on the performance of deterministic and randomized algorithms for on–line tree embedding. In particular, we study tradeoffs between performance (load–balance) and communication overhead (message congest ion). We give a simple technique to derive lower bounds on the congestion that any on–line allocation algorithm must incur in order to guarantee load balance. This technique works for both randomized and deterministic algorithms, although we find that the performance of randomized on-line algorithms to be somewhat better than that of deterministic algorithms. Optimal bounds are achieved for several networks including multi–dimensional grids and butterflies

    The Core of the Participatory Budgeting Problem

    Full text link
    In participatory budgeting, communities collectively decide on the allocation of public tax dollars for local public projects. In this work, we consider the question of fairly aggregating the preferences of community members to determine an allocation of funds to projects. This problem is different from standard fair resource allocation because of public goods: The allocated goods benefit all users simultaneously. Fairness is crucial in participatory decision making, since generating equitable outcomes is an important goal of these processes. We argue that the classic game theoretic notion of core captures fairness in the setting. To compute the core, we first develop a novel characterization of a public goods market equilibrium called the Lindahl equilibrium, which is always a core solution. We then provide the first (to our knowledge) polynomial time algorithm for computing such an equilibrium for a broad set of utility functions; our algorithm also generalizes (in a non-trivial way) the well-known concept of proportional fairness. We use our theoretical insights to perform experiments on real participatory budgeting voting data. We empirically show that the core can be efficiently computed for utility functions that naturally model our practical setting, and examine the relation of the core with the familiar welfare objective. Finally, we address concerns of incentives and mechanism design by developing a randomized approximately dominant-strategy truthful mechanism building on the exponential mechanism from differential privacy

    Sequential monitoring of response-adaptive randomized clinical trials

    Full text link
    Clinical trials are complex and usually involve multiple objectives such as controlling type I error rate, increasing power to detect treatment difference, assigning more patients to better treatment, and more. In literature, both response-adaptive randomization (RAR) procedures (by changing randomization procedure sequentially) and sequential monitoring (by changing analysis procedure sequentially) have been proposed to achieve these objectives to some degree. In this paper, we propose to sequentially monitor response-adaptive randomized clinical trial and study it's properties. We prove that the sequential test statistics of the new procedure converge to a Brownian motion in distribution. Further, we show that the sequential test statistics asymptotically satisfy the canonical joint distribution defined in Jennison and Turnbull (\citeyearJT00). Therefore, type I error and other objectives can be achieved theoretically by selecting appropriate boundaries. These results open a door to sequentially monitor response-adaptive randomized clinical trials in practice. We can also observe from the simulation studies that, the proposed procedure brings together the advantages of both techniques, in dealing with power, total sample size and total failure numbers, while keeps the type I error. In addition, we illustrate the characteristics of the proposed procedure by redesigning a well-known clinical trial of maternal-infant HIV transmission.Comment: Published in at http://dx.doi.org/10.1214/10-AOS796 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Dynamic algorithms for multicast with intra-session network coding

    Get PDF
    The problem of multiple multicast sessions with intra-session network coding in time-varying networks is considered. The network-layer capacity region of input rates that can be stably supported is established. Dynamic algorithms for multicast routing, network coding, power allocation, session scheduling, and rate allocation across correlated sources, which achieve stability for rates within the capacity region, are presented. This work builds on the back-pressure approach introduced by Tassiulas et al., extending it to network coding and correlated sources. In the proposed algorithms, decisions on routing, network coding, and scheduling between different sessions at a node are made locally at each node based on virtual queues for different sinks. For correlated sources, the sinks locally determine and control transmission rates across the sources. The proposed approach yields a completely distributed algorithm for wired networks. In the wireless case, power control among different transmitters is centralized while routing, network coding, and scheduling between different sessions at a given node are distributed

    On the almost sure convergence of adaptive allocation procedures

    Get PDF
    In this paper, we provide some general convergence results for adaptive designs for treatment comparison, both in the absence and presence of covariates. In particular, we demonstrate the almost sure convergence of the treatment allocation proportion for a vast class of adaptive procedures, also including designs that have not been formally investigated but mainly explored through simulations, such as Atkinson's optimum biased coin design, Pocock and Simon's minimization method and some of its generalizations. Even if the large majority of the proposals in the literature rely on continuous allocation rules, our results allow to prove via a unique mathematical framework the convergence of adaptive allocation methods based on both continuous and discontinuous randomization functions. Although several examples of earlier works are included in order to enhance the applicability, our approach provides substantial insight for future suggestions, especially in the absence of a prefixed target and for designs characterized by sequences of allocation rules.Comment: Published at http://dx.doi.org/10.3150/13-BEJ591 in the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Multitype randomized Reed--Frost epidemics and epidemics upon random graphs

    Full text link
    We consider a multitype epidemic model which is a natural extension of the randomized Reed--Frost epidemic model. The main result is the derivation of an asymptotic Gaussian limit theorem for the final size of the epidemic. The method of proof is simpler, and more direct, than is used for similar results elsewhere in the epidemics literature. In particular, the results are specialized to epidemics upon extensions of the Bernoulli random graph.Comment: Published at http://dx.doi.org/10.1214/105051606000000123 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore