333 research outputs found

    Verifying proofs in constant depth

    Get PDF
    In this paper we initiate the study of proof systems where verification of proofs proceeds by NC circuits. We investigate the question which languages admit proof systems in this very restricted model. Formulated alternatively, we ask which languages can be enumerated by NC functions. Our results show that the answer to this problem is not determined by the complexity of the language. On the one hand, we construct NC proof systems for a variety of languages ranging from regular to NP-complete. On the other hand, we show by combinatorial methods that even easy regular languages such as Exact-OR do not admit NC proof systems. We also present a general construction of proof systems for regular languages with strongly connected NFA's

    Hamming Approximation of NP Witnesses

    Get PDF
    Given a satisfiable 3-SAT formula, how hard is it to find an assignment to the variables that has Hamming distance at most n/2 to a satisfying assignment? More generally, consider any polynomial-time verifier for any NP-complete language. A d(n)-Hamming-approximation algorithm for the verifier is one that, given any member x of the language, outputs in polynomial time a string a with Hamming distance at most d(n) to some witness w, where (x,w) is accepted by the verifier. Previous results have shown that, if P != NP, then every NP-complete language has a verifier for which there is no (n/2-n^(2/3+d))-Hamming-approximation algorithm, for various constants d > 0. Our main result is that, if P != NP, then every paddable NP-complete language has a verifier that admits no (n/2+O(sqrt(n log n)))-Hamming-approximation algorithm. That is, one cannot get even half the bits right. We also consider natural verifiers for various well-known NP-complete problems. They do have n/2-Hamming-approximation algorithms, but, if P != NP, have no (n/2-n^epsilon)-Hamming-approximation algorithms for any constant epsilon > 0. We show similar results for randomized algorithms

    Codeword stabilized quantum codes: algorithm and structure

    Full text link
    The codeword stabilized ("CWS") quantum codes formalism presents a unifying approach to both additive and nonadditive quantum error-correcting codes (arXiv:0708.1021). This formalism reduces the problem of constructing such quantum codes to finding a binary classical code correcting an error pattern induced by a graph state. Finding such a classical code can be very difficult. Here, we consider an algorithm which maps the search for CWS codes to a problem of identifying maximum cliques in a graph. While solving this problem is in general very hard, we prove three structure theorems which reduce the search space, specifying certain admissible and optimal ((n,K,d)) additive codes. In particular, we find there does not exist any ((7,3,3)) CWS code though the linear programming bound does not rule it out. The complexity of the CWS search algorithm is compared with the contrasting method introduced by Aggarwal and Calderbank (arXiv:cs/0610159).Comment: 11 pages, 1 figur

    An Atypical Survey of Typical-Case Heuristic Algorithms

    Full text link
    Heuristic approaches often do so well that they seem to pretty much always give the right answer. How close can heuristic algorithms get to always giving the right answer, without inducing seismic complexity-theoretic consequences? This article first discusses how a series of results by Berman, Buhrman, Hartmanis, Homer, Longpr\'{e}, Ogiwara, Sch\"{o}ening, and Watanabe, from the early 1970s through the early 1990s, explicitly or implicitly limited how well heuristic algorithms can do on NP-hard problems. In particular, many desirable levels of heuristic success cannot be obtained unless severe, highly unlikely complexity class collapses occur. Second, we survey work initiated by Goldreich and Wigderson, who showed how under plausible assumptions deterministic heuristics for randomized computation can achieve a very high frequency of correctness. Finally, we consider formal ways in which theory can help explain the effectiveness of heuristics that solve NP-hard problems in practice.Comment: This article is currently scheduled to appear in the December 2012 issue of SIGACT New

    Baby-Step Giant-Step Algorithms for the Symmetric Group

    Full text link
    We study discrete logarithms in the setting of group actions. Suppose that GG is a group that acts on a set SS. When r,s∈Sr,s \in S, a solution g∈Gg \in G to rg=sr^g = s can be thought of as a kind of logarithm. In this paper, we study the case where G=SnG = S_n, and develop analogs to the Shanks baby-step / giant-step procedure for ordinary discrete logarithms. Specifically, we compute two sets A,B⊆SnA, B \subseteq S_n such that every permutation of SnS_n can be written as a product abab of elements a∈Aa \in A and b∈Bb \in B. Our deterministic procedure is optimal up to constant factors, in the sense that AA and BB can be computed in optimal asymptotic complexity, and ∣A∣|A| and ∣B∣|B| are a small constant from n!\sqrt{n!} in size. We also analyze randomized "collision" algorithms for the same problem

    On the Lattice Isomorphism Problem

    Full text link
    We study the Lattice Isomorphism Problem (LIP), in which given two lattices L_1 and L_2 the goal is to decide whether there exists an orthogonal linear transformation mapping L_1 to L_2. Our main result is an algorithm for this problem running in time n^{O(n)} times a polynomial in the input size, where n is the rank of the input lattices. A crucial component is a new generalized isolation lemma, which can isolate n linearly independent vectors in a given subset of Z^n and might be useful elsewhere. We also prove that LIP lies in the complexity class SZK.Comment: 23 pages, SODA 201
    • …
    corecore