178 research outputs found

    ParGeo: A Library for Parallel Computational Geometry

    Get PDF

    Finding Convex Hulls Using Quickhull on the GPU

    Full text link
    We present a convex hull algorithm that is accelerated on commodity graphics hardware. We analyze and identify the hurdles of writing a recursive divide and conquer algorithm on the GPU and divise a framework for representing this class of problems. Our framework transforms the recursive splitting step into a permutation step that is well-suited for graphics hardware. Our convex hull algorithm of choice is Quickhull. Our parallel Quickhull implementation (for both 2D and 3D cases) achieves an order of magnitude speedup over standard computational geometry libraries.Comment: 11 page

    Improved Incremental Randomized Delaunay Triangulation

    Get PDF
    We propose a new data structure to compute the Delaunay triangulation of a set of points in the plane. It combines good worst case complexity, fast behavior on real data, and small memory occupation. The location structure is organized into several levels. The lowest level just consists of the triangulation, then each level contains the triangulation of a small sample of the levels below. Point location is done by marching in a triangulation to determine the nearest neighbor of the query at that level, then the march restarts from that neighbor at the level below. Using a small sample (3%) allows a small memory occupation; the march and the use of the nearest neighbor to change levels quickly locate the query.Comment: 19 pages, 7 figures Proc. 14th Annu. ACM Sympos. Comput. Geom., 106--115, 199
    • …
    corecore