1,278 research outputs found

    Sharing Social Network Data: Differentially Private Estimation of Exponential-Family Random Graph Models

    Get PDF
    Motivated by a real-life problem of sharing social network data that contain sensitive personal information, we propose a novel approach to release and analyze synthetic graphs in order to protect privacy of individual relationships captured by the social network while maintaining the validity of statistical results. A case study using a version of the Enron e-mail corpus dataset demonstrates the application and usefulness of the proposed techniques in solving the challenging problem of maintaining privacy \emph{and} supporting open access to network data to ensure reproducibility of existing studies and discovering new scientific insights that can be obtained by analyzing such data. We use a simple yet effective randomized response mechanism to generate synthetic networks under ϵ\epsilon-edge differential privacy, and then use likelihood based inference for missing data and Markov chain Monte Carlo techniques to fit exponential-family random graph models to the generated synthetic networks.Comment: Updated, 39 page

    Crowd-ML: A Privacy-Preserving Learning Framework for a Crowd of Smart Devices

    Full text link
    Smart devices with built-in sensors, computational capabilities, and network connectivity have become increasingly pervasive. The crowds of smart devices offer opportunities to collectively sense and perform computing tasks in an unprecedented scale. This paper presents Crowd-ML, a privacy-preserving machine learning framework for a crowd of smart devices, which can solve a wide range of learning problems for crowdsensing data with differential privacy guarantees. Crowd-ML endows a crowdsensing system with an ability to learn classifiers or predictors online from crowdsensing data privately with minimal computational overheads on devices and servers, suitable for a practical and large-scale employment of the framework. We analyze the performance and the scalability of Crowd-ML, and implement the system with off-the-shelf smartphones as a proof of concept. We demonstrate the advantages of Crowd-ML with real and simulated experiments under various conditions

    Injecting Uncertainty in Graphs for Identity Obfuscation

    Full text link
    Data collected nowadays by social-networking applications create fascinating opportunities for building novel services, as well as expanding our understanding about social structures and their dynamics. Unfortunately, publishing social-network graphs is considered an ill-advised practice due to privacy concerns. To alleviate this problem, several anonymization methods have been proposed, aiming at reducing the risk of a privacy breach on the published data, while still allowing to analyze them and draw relevant conclusions. In this paper we introduce a new anonymization approach that is based on injecting uncertainty in social graphs and publishing the resulting uncertain graphs. While existing approaches obfuscate graph data by adding or removing edges entirely, we propose using a finer-grained perturbation that adds or removes edges partially: this way we can achieve the same desired level of obfuscation with smaller changes in the data, thus maintaining higher utility. Our experiments on real-world networks confirm that at the same level of identity obfuscation our method provides higher usefulness than existing randomized methods that publish standard graphs.Comment: VLDB201

    A SURVEY ON PRIVACY PRESERVING TECHNIQUES FOR SOCIAL NETWORK DATA

    Get PDF
    In this era of 20th century, online social network like Facebook, twitter, etc. plays a very important role in everyone's life. Social network data, regarding any individual organization can be published online at any time, in which there is a risk of information leakage of anyone's personal data. So preserving the privacy of individual organizations and companies are needed before data is published online. Therefore the research was carried out in this area for many years and it is still going on. There have been various existing techniques that provide the solutions for preserving privacy to tabular data called as relational data and also social network data represented in graphs. Different techniques exists for tabular data but you can't apply directly to the structured complex graph  data,which consists of vertices represented as individuals and edges representing some kind of connection or relationship between the nodes. Various techniques like K-anonymity, L-diversity, and T-closeness exist to provide privacy to nodes and techniques like edge perturbation, edge randomization are there to provide privacy to edges in social graphs. Development of new techniques by  Integration to exiting techniques like K-anonymity ,edge perturbation, edge randomization, L-Diversity are still going on to provide more privacy to relational data and social network data are ongoingin the best possible manner.Â
    • …
    corecore