312 research outputs found

    Exploiting Data Skew for Improved Query Performance

    Full text link
    Analytic queries enable sophisticated large-scale data analysis within many commercial, scientific and medical domains today. Data skew is a ubiquitous feature of these real-world domains. In a retail database, some products are typically much more popular than others. In a text database, word frequencies follow a Zipf distribution with a small number of very common words, and a long tail of infrequent words. In a geographic database, some regions have much higher populations (and data measurements) than others. Current systems do not make the most of caches for exploiting skew. In particular, a whole cache line may remain cache resident even though only a small part of the cache line corresponds to a popular data item. In this paper, we propose a novel index structure for repositioning data items to concentrate popular items into the same cache lines. The net result is better spatial locality, and better utilization of limited cache resources. We develop a theoretical model for analyzing the cache behavior, and implement database operators that are efficient in the presence of skew. Our experiments on real and synthetic data show that exploiting skew can significantly improve in-memory query performance. In some cases, our techniques can speed up queries by over an order of magnitude

    Competitive Parallel Disk Prefetching and Buffer Management

    Get PDF
    We provide a competitive analysis framework for online prefetching and buffer management algorithms in parallel I/O systems, using a read-once model of block references. This has widespread applicability to key I/O-bound applications such as external merging and concurrent playback of multiple video streams. Two realistic lookahead models, global lookahead and local lookahead, are defined. Algorithms NOM and GREED based on these two forms of lookahead are analyzed for shared buffer and distributed buffer configurations, both of which occur frequently in existing systems. An important aspect of our work is that we show how to implement both the models of lookahead in practice using the simple techniques of forecasting and flushing. Given a -disk parallel I/O system and a globally shared I/O buffer that can hold upto disk blocks, we derive a lower bound of on the competitive ratio of any deterministic online prefetching algorithm with lookahead. NOM is shown to match the lower bound using global -block lookahead. In contrast, using only local lookahead results in an competitive ratio. When the buffer is distributed into portions of blocks each, the algorithm GREED based on local lookahead is shown to be optimal, and NOM is within a constant factor of optimal. Thus we provide a theoretical basis for the intuition that global lookahead is more valuable for prefetching in the case of a shared buffer configuration whereas it is enough to provide local lookahead in case of the distributed configuration. Finally, we analyze the performance of these algorithms for reference strings generated by a uniformly-random stochastic process and we show that they achieve the minimal expected number of I/Os. These results also give bounds on the worst-case expected performance of algorithms which employ randomization in the data layout

    Smart hardware designs for probabilistically-analyzable processor architectures

    Get PDF
    Future Critical Real-Time Embedded Systems (CRTES), like those is planes, cars or trains, require more and more guaranteed performance in order to satisfy the increasing performance demands of advanced complex software features. While increased performance can be achieved by deploying processor techniques currently used in High-Performance Computing (HPC) and mainstream domains, their use challenges the software timing analysis, a necessary step in CRTES' verification and validation. Cache memories are known to have high impact in performance, and in fact, current CRTES include multicores usually with several levels of cache. In this line, this Thesis aims at increasing the guaranteed performance of CRTES by using techniques for caches building upon time randomization and providing probabilistic guarantees of tasks' execution time. In this Thesis, we first focus on on improving cache placement and replacement to improve guaranteed performance. For placement, different existing policies are explored in a multi-level cache setup, and a solution is reached in which different of those policies are combined. For cache replacement, we analyze a pathological scenario that no cache policy so far accounts and propose several policies that fix this pathological scenario. For shared caches in multicore we observe that contention is mainly caused by private writes that go through to the shared cache, yet using a pure write-back policy also has its drawbacks. We propose a hybrid approach to mitigate this contention. Building on this solution, the next contribution tackles a problem caused by the need of some reliability mechanisms in CRTES. Implementing reliability close to the processor's core has a significant impact in performance. A look-ahead error detection solution is proposed to greatly mitigate the performance impact. The next contribution proposes the first hardware prefetcher for CRTES with arbitrary cache hierarchies. Given its speculative nature, prefetchers that have a guaranteed positive impact on performance are difficult to design. We present a framework that provides execution time guarantees and obtains a performance benefit. Finally, we focus on the impact of timing anomalies in CRTES with caches. For the first time, a definition and taxonomy of timing anomalies is given for Measurement-Based Timing Analysis. Then, we focus on a specific timing anomaly that can happen with caches and provide a solution to account for it in the execution time estimates.Los Sistemas Empotrados de Tiempo-Real Crítico (SETRC), como los de los aviones, coches o trenes, requieren más y más rendimiento garantizado para satisfacer la demanda al alza de rendimiento para funciones complejas y avanzadas de software. Aunque el incremento en rendimiento puede ser adquirido utilizando técnicas de arquitectura de procesadores actualmente utilizadas en la Computación de Altas Prestaciones (CAP) i en los dominios convencionales, este uso presenta retos para el análisis del tiempo de software, un paso necesario en la verificación y validación de SETRC. Las memorias caches son conocidas por su gran impacto en rendimiento y, de hecho, los actuales SETRC incluyen multicores normalmente con diversos niveles de cache. En esta línea, esta Tesis tiene como objetivo mejorar el rendimiento garantizado de los SETRC utilizando técnicas para caches y utilizando métodos como la randomización del tiempo y proveyendo garantías probabilísticas de tiempo de ejecución de las tareas. En esta Tesis, primero nos centramos en mejorar la colocación y el reemplazo de caches para mejorar el rendimiento garantizado. Para la colocación, diferentes políticas son exploradas en un sistema cache multi-nivel, y se llega a una solución donde diversas de estas políticas son combinadas. Para el reemplazo, analizamos un escenario patológico que ninguna política actual tiene en cuenta, y proponemos varias políticas que solucionan este escenario patológico. Para caches compartidas en multicores, observamos que la contención es causada principalmente por escrituras privadas que van a través de la cache compartida, pero usar una política de escritura retardada pura también tiene sus consecuencias. Proponemos un enfoque híbrido para mitigar la contención. Sobre esta solución, la siguiente contribución ataca un problema causado por la necesidad de mecanismos de fiabilidad en SETRC. Implementar fiabilidad cerca del núcleo del procesador tiene un impacto significativo en rendimiento. Una solución basada en anticipación se propone para mitigar el impacto en rendimiento. La siguiente contribución propone el primer prefetcher hardware para SETRC con una jerarquía de caches arbitraria. Por primera vez, se da una definición y taxonomía de anomalías temporales para Análisis Temporal Basado en Medidas. Después, nos centramos en una anomalía temporal concreta que puede pasar con caches y ofrecemos una solución que la tiene en cuenta en las estimaciones del tiempo de ejecución.Postprint (published version

    Memory Management for Emerging Memory Technologies

    Get PDF
    The Memory Wall, or the gap between CPU speed and main memory latency, is ever increasing. The latency of Dynamic Random-Access Memory (DRAM) is now of the order of hundreds of CPU cycles. Additionally, the DRAM main memory is experiencing power, performance and capacity constraints that limit process technology scaling. On the other hand, the workloads running on such systems are themselves changing due to virtualization and cloud computing demanding more performance of the data centers. Not only do these workloads have larger working set sizes, but they are also changing the way memory gets used, resulting in higher sharing and increased bandwidth demands. New Non-Volatile Memory technologies (NVM) are emerging as an answer to the current main memory issues. This thesis looks at memory management issues as the emerging memory technologies get integrated into the memory hierarchy. We consider the problems at various levels in the memory hierarchy, including sharing of CPU LLC, traffic management to future non-volatile memories behind the LLC, and extending main memory through the employment of NVM. The first solution we propose is “Adaptive Replacement and Insertion" (ARI), an adaptive approach to last-level CPU cache management, optimizing the cache miss rate and writeback rate simultaneously. Our specific focus is to reduce writebacks as much as possible while maintaining or improving miss rate relative to conventional LRU replacement policy, with minimal hardware overhead. ARI reduces writebacks on benchmarks from SPEC2006 suite on average by 32.9% while also decreasing misses on average by 4.7%. In a PCM based memory system, this decreases energy consumption by 23% compared to LRU and provides a 49% lifetime improvement beyond what is possible with randomized wear-leveling. Our second proposal is “Variable-Timeslice Thread Scheduling" (VATS), an OS kernel-level approach to CPU cache sharing. With modern, large, last-level caches (LLC), the time to fill the LLC is greater than the OS scheduling window. As a result, when a thread aggressively thrashes the LLC by replacing much of the data in it, another thread may not be able to recover its working set before being rescheduled. We isolate the threads in time by increasing their allotted time quanta, and allowing larger periods of time between interfering threads. Our approach, compared to conventional scheduling, mitigates up to 100% of the performance loss caused by CPU LLC interference. The system throughput is boosted by up to 15%. As an unconventional approach to utilizing emerging memory technologies, we present a Ternary Content-Addressable Memory (TCAM) design with Flash transistors. TCAM is successfully used in network routing but can also be utilized in the OS Virtual Memory applications. Based on our layout and circuit simulation experiments, we conclude that our FTCAM block achieves an area improvement of 7.9× and a power improvement of 1.64× compared to a CMOS approach. In order to lower the cost of Main Memory in systems with huge memory demand, it is becoming practical to extend the DRAM in the system with the less-expensive NVMe Flash, for a much lower system cost. However, given the relatively high Flash devices access latency, naively using them as main memory leads to serious performance degradation. We propose OSVPP, a software-only, OS swap-based page prefetching scheme for managing such hybrid DRAM + NVM systems. We show that it is possible to gain about 50% of the lost performance due to swapping into the NVM and thus enable the utilization of such hybrid systems for memory-hungry applications, lowering the memory cost while keeping the performance comparable to the DRAM-only system

    Memory Management for Emerging Memory Technologies

    Get PDF
    The Memory Wall, or the gap between CPU speed and main memory latency, is ever increasing. The latency of Dynamic Random-Access Memory (DRAM) is now of the order of hundreds of CPU cycles. Additionally, the DRAM main memory is experiencing power, performance and capacity constraints that limit process technology scaling. On the other hand, the workloads running on such systems are themselves changing due to virtualization and cloud computing demanding more performance of the data centers. Not only do these workloads have larger working set sizes, but they are also changing the way memory gets used, resulting in higher sharing and increased bandwidth demands. New Non-Volatile Memory technologies (NVM) are emerging as an answer to the current main memory issues. This thesis looks at memory management issues as the emerging memory technologies get integrated into the memory hierarchy. We consider the problems at various levels in the memory hierarchy, including sharing of CPU LLC, traffic management to future non-volatile memories behind the LLC, and extending main memory through the employment of NVM. The first solution we propose is “Adaptive Replacement and Insertion" (ARI), an adaptive approach to last-level CPU cache management, optimizing the cache miss rate and writeback rate simultaneously. Our specific focus is to reduce writebacks as much as possible while maintaining or improving miss rate relative to conventional LRU replacement policy, with minimal hardware overhead. ARI reduces writebacks on benchmarks from SPEC2006 suite on average by 32.9% while also decreasing misses on average by 4.7%. In a PCM based memory system, this decreases energy consumption by 23% compared to LRU and provides a 49% lifetime improvement beyond what is possible with randomized wear-leveling. Our second proposal is “Variable-Timeslice Thread Scheduling" (VATS), an OS kernel-level approach to CPU cache sharing. With modern, large, last-level caches (LLC), the time to fill the LLC is greater than the OS scheduling window. As a result, when a thread aggressively thrashes the LLC by replacing much of the data in it, another thread may not be able to recover its working set before being rescheduled. We isolate the threads in time by increasing their allotted time quanta, and allowing larger periods of time between interfering threads. Our approach, compared to conventional scheduling, mitigates up to 100% of the performance loss caused by CPU LLC interference. The system throughput is boosted by up to 15%. As an unconventional approach to utilizing emerging memory technologies, we present a Ternary Content-Addressable Memory (TCAM) design with Flash transistors. TCAM is successfully used in network routing but can also be utilized in the OS Virtual Memory applications. Based on our layout and circuit simulation experiments, we conclude that our FTCAM block achieves an area improvement of 7.9× and a power improvement of 1.64× compared to a CMOS approach. In order to lower the cost of Main Memory in systems with huge memory demand, it is becoming practical to extend the DRAM in the system with the less-expensive NVMe Flash, for a much lower system cost. However, given the relatively high Flash devices access latency, naively using them as main memory leads to serious performance degradation. We propose OSVPP, a software-only, OS swap-based page prefetching scheme for managing such hybrid DRAM + NVM systems. We show that it is possible to gain about 50% of the lost performance due to swapping into the NVM and thus enable the utilization of such hybrid systems for memory-hungry applications, lowering the memory cost while keeping the performance comparable to the DRAM-only system

    Adaptive Microarchitectural Optimizations to Improve Performance and Security of Multi-Core Architectures

    Get PDF
    With the current technological barriers, microarchitectural optimizations are increasingly important to ensure performance scalability of computing systems. The shift to multi-core architectures increases the demands on the memory system, and amplifies the role of microarchitectural optimizations in performance improvement. In a multi-core system, microarchitectural resources are usually shared, such as the cache, to maximize utilization but sharing can also lead to contention and lower performance. This can be mitigated through partitioning of shared caches.However, microarchitectural optimizations which were assumed to be fundamentally secure for a long time, can be used in side-channel attacks to exploit secrets, as cryptographic keys. Timing-based side-channels exploit predictable timing variations due to the interaction with microarchitectural optimizations during program execution. Going forward, there is a strong need to be able to leverage microarchitectural optimizations for performance without compromising security. This thesis contributes with three adaptive microarchitectural resource management optimizations to improve security and/or\ua0performance\ua0of multi-core architectures\ua0and a systematization-of-knowledge of timing-based side-channel attacks.\ua0We observe that to achieve high-performance cache partitioning in a multi-core system\ua0three requirements need to be met: i) fine-granularity of partitions, ii) locality-aware placement and iii) frequent changes. These requirements lead to\ua0high overheads for current centralized partitioning solutions, especially as the number of cores in the\ua0system increases. To address this problem, we present an adaptive and scalable cache partitioning solution (DELTA) using a distributed and asynchronous allocation algorithm. The\ua0allocations occur through core-to-core challenges, where applications with larger performance benefit will gain cache capacity. The\ua0solution is implementable in hardware, due to low computational complexity, and can scale to large core counts.According to our analysis, better performance can be achieved by coordination of multiple optimizations for different resources, e.g., off-chip bandwidth and cache, but is challenging due to the increased number of possible allocations which need to be evaluated.\ua0Based on these observations, we present a solution (CBP) for coordinated management of the optimizations: cache partitioning, bandwidth partitioning and prefetching.\ua0Efficient allocations, considering the inter-resource interactions and trade-offs, are achieved using local resource managers to limit the solution space.The continuously growing number of\ua0side-channel attacks leveraging\ua0microarchitectural optimizations prompts us to review attacks and defenses to understand the vulnerabilities of different microarchitectural optimizations. We identify the four root causes of timing-based side-channel attacks: determinism, sharing, access violation\ua0and information flow.\ua0Our key insight is that eliminating any of the exploited root causes, in any of the attack steps, is enough to provide protection.\ua0Based on our framework, we present a systematization of the attacks and defenses on a wide range of microarchitectural optimizations, which highlights their key similarities.\ua0Shared caches are an attractive attack surface for side-channel attacks, while defenses need to be efficient since the cache is crucial for performance.\ua0To address this issue, we present an adaptive and scalable cache partitioning solution (SCALE) for protection against cache side-channel attacks. The solution leverages randomness,\ua0and provides quantifiable and information theoretic security guarantees using differential privacy. The solution closes the performance gap to a state-of-the-art non-secure allocation policy for a mix of secure and non-secure applications

    Automatic Sharing Classification and Timely Push for Cache-coherent Systems

    Get PDF
    This paper proposes and evaluates Sharing/Timing Adaptive Push (STAP), a dynamic scheme for preemptively sending data from producers to consumers to minimize criticalpath communication latency. STAP uses small hardware buffers to dynamically detect sharing patterns and timing requirements. The scheme applies to both intra-node and inter-socket directorybased shared memory networks. We integrate STAP into a MOESI cache-coherence protocol using heuristics to detect different data sharing patterns, including broadcasts, producer/consumer, and migratory-data sharing. Using 12 benchmarks from the PARSEC and SPLASH-2 suites in 3 different configurations, we show that our scheme significantly reduces communication latency in NUMA systems and achieves an average of 10% performance improvement (up to 46%), with at most 2% on-chip storage overhead. When combined with existing prefetch schemes, STAP either outperforms prefetching or combines with prefetching for improved performance (up to 15% extra) in most cases
    corecore